BL13XU 表面・界面構造解析ビームライン

1. 概要

表面や界面では、物質のもつ対称性が破れるため結晶 のかたまり(バルク)とは異なる特徴的な原子配列をとり、 それに起因して多様な物性があらわれる。表面・界面構 造解析ビームラインBL13XUでは、X線の回折・散乱現 象を利用して金属、半導体結晶の表面構造のその場観察 のほか、酸化物結晶、有機結晶、触媒の表面層や、その 上に成長した薄膜・ナノ物質構造が調べられている。デ バイス材料の局所歪みの評価や、静的な構造解析にとど まらない外場印加時の表面や界面の動的構造変化のその 場観察、表面における位相問題への取り組みなど、多岐 にわたるX線回折・散乱実験が行われている。

第1実験ハッチでは、高精度X線回折装置を用いた薄膜、 固体液体界面、ナノ物質の解析実験、第3実験ハッチでは、 超高真空表面X線回折装置による固体表面のその場観察 実験、第4実験ハッチでは、高分解能ナノビーム回折装 置によるデバイス材等の局所構造解析実験が主に行われ ている。第2実験ハッチは、ユーザー持ち込み装置用の 実験ハッチである。標準アンジュレータ・光学系に加え、 非対称分光結晶をもちいた大強度光学系も利用できる。 異常散乱等エネルギー可変型実験を効率化する光学系も 整備されている。以下に2016年度に行われた技術開発・ 高度化の詳細について報告する。

2. 表面X線回折計測の迅速化

放射光X線回折による表面構造解析では、表面界面に 存在するわずか数原子層の原子の配列を解析対象とする。 そのX線反射率は多く見積もってもバルクの百万分の一 以下であることから、計測時間に数日を要してしまう場 合も多い。研究対象を拡大し、より広範なユーザーの要 望に応える上で計測時間はボトルネックとなっていた。 そこで、従来のロッキングモードとよばれる試料を揺動 する方式に加え、試料を揺動しない代わりに二次元検出 器をもちいる静止モードとよばれる計測方式を導入した。 第3実験ハッチに設置された、分子線エピタキシー法に よるその場試料作製が可能な超高真空槽を備えた表面回 折装置の実験レイアウトを図1に示す。図1挿入図に示 すように、検出器軸に設置された二次元検出器をもちい て、回折像とそのまわりのバックグラウンド信号を同時 に計測するため、格段に計測時間を短縮することができ る。酸化物界面を評価したユーザー実験例^[1]では、従

図1 迅速計測を実現する二次元検出器をもちいた表面X線回折 法の実験レイアウト。右上挿入図は二次元検出器で得ら れた試料からの回折像の例。

来法に比して10倍以上の迅速測定が実現できた。本計測 方式の導入によって、上述のとおり表面回折の測定時間 を短縮できるほか、より高精度の表面回折データも取得 可能となるため、より高品位なデータをユーザーに提供 できることとなる。

参考文献

 D. Kan, Y. Wakabayashi, H. Tajiri, Y. Shimakawa: *Phys. Rev.* B **94**, (2016) 025112.

3. 高分解能ナノビームX線回折装置の整備

本装置は、X線マイクロ・ナノビームを用いたX線回 折法により、半導体材料やデバイス中の局所領域におけ る格子歪と格子面の傾きを分離し、且つ、高い空間・角 度分解能で測定することができる。これまで、集光素子 としてフレネルゾーンプレートを用いていたが、15 keV 以上の高エネルギーX線に対して集光効率が著しく低下 することが問題であった。そこで、高エネルギーX線を 高効率に集光可能な石英製キノフォームレンズを導入した。

キノフォームレンズは、石英基板上にリソグラフィと ドライエッチングのプロセスによりパターンを形成した ものである。図2(a)に、同レンズの顕微鏡写真を示す。 100 µm深さのエッチングの実現により、100×100 µm² のレンズ開口を確保した。また、レンズによるX線の吸 収を低減するため、レンズ外側の部分を矩形に除去して いる。焦点距離200 mmと100 mmのレンズを作製し、

(b)

X線 100µm

図2 (a) 石英製キノフォームレンズの顕微鏡写真。(b) 石英 製キノフォームレンズを用いた実験レイアウト。レンズ 1(縦集光用)とレンズ2(横集光用)が光軸上に並んでいる。

これらを縦横に組み合わせることで、水平・鉛直の両方 向の集光を実現した(図2(b)参照)。

同レンズによる放射光X線の集光試験を行った結果、 X線エネルギー20 keVで0.77 × 2.49 μ m² (水平 × 鉛 直方向)、25 keVで1.11 × 1.70 μ m²、30 keVで2.33 × 3.20 μ m²のビームサイズを得た。また、30 keVにお いて39%と高い集光効率を達成した。高エネルギーX線 マイクロビームを用いれば、Ag、Inなどの蛍光を利用し た精密位置調整や、試料深部からの回折測定が可能とな り、観測可能な逆格子空間も拡大させることができるた め、より一層高度なユーザー支援が可能となる。

> 利用研究促進部門 構造物性Iグループ

> > 田尻 寛男

ナノテクノロジー利用研究推進グループ 隅谷 和嗣、今井 康彦