BL35XU 高分解能非弾性散乱

概要

BL35XUは、短周期アンジュレータから得られる硬X 線を利用したmeV 分解能の高分解能非弾性X線散乱ビ ームラインである。ビームラインでは、周期配列を持つ 結晶や周期配列を持たない液体やガラスなどからの素励 起観測に基づく原子ダイナミクスに加えて、最近は音響 モードの分散関係から高圧・高温下での弾性率を推定し、 地震波の計測から得られた実測値との比較から地球最深 部の殻の組成同定を目指す地球科学分野への研究もおこ なわれている。このようにBL35XUでは、様々な研究分 野にわたる実験がおこなわれているが、より多くのユー ザを獲得するために、より多様な試料条件を提供するこ とが重要となる。その一環として、共通機器として導入 した従来機器よりも試料位置での最低到達温度がさらに 低い2 Kクライオスタットが利用できるような環境を整 備した。また、測定コンピュータの更新に伴い測定の高 速化・高効率化を達成したので、この点に関しても報告 する。

He循環式2Kクライオスタットの利用に向けた整備

固体物理分野では、特に超伝導や磁性の分野において 低温域での計測が必須となっている。絶対零度に近い温 度域では、沸点が4.2 Kの液体ヘリウムが使用されるこ とが少なくないが、希少資源の節約や運転経費の削減と いう立場からヘリウム循環式であることが冷凍機の仕様 として望ましい。そこで、硬X線領域の共用ビームライ ンでの超低温実験を実現するために、共通機器としてへ リウム循環式のクライオスタットを整備した。本クライ オスタットは、従来10 K程度の低温を実現することが可 能なヘリウム循環式クライオスタットと同程度の性能を 有するコンプレッサー(住友重工製)を利用した冷凍機に、 ヘリウム循環型のジュール・トムソン (JT)効果を装備 したコールド・ヘッドを取り付けたもので、試料位置で 最低温度1.5 Kを達成する仕様となっている。

本クライオスタットは共用の硬X線ビームラインでの 共通機器として利用できるように設計されている。この ため、SPring-8の標準的なビームラインよりも370 mm 高い、床面から1800 mmの高さに試料位置があり、試 料周りの制約が比較的高いBL35XUでも利用可能な仕様 となっている。このため、クライオスタット本体とコン プレッサー及び循環させるヘリウムが細管の中で詰まる

図1 BL35XUで2Kクライオスタットの使用状況。手前左に見 えるポンプの後ろにヘリウムガス精製装置が、写真中央の 非弾性散乱分光器の奥に冷凍器用のコンプレッサーが配置 されている。

ことを防止するためのヘリウムガス精製装置の間の配管 を十分長くとる構造となっている。また、これだけの長 さの配管であれば、他の硬X線ビームラインでは問題な く利用できる長さである。図1はBL35XUでの当該クラ イオスタットを試運転させたときの様子を撮影したもの である。写真は、クライオスタットを用いて回折計で実 験試料を様々な方位に合わせて、非弾性X線散乱スペク トルの測定が可能であることを示している。

図1に示す配置で、X線ビームを試料に照射しない条件で仕様である最低温度1.5 Kを達成することに加え、 1.5 Kから室温までの任意の温度に制御可能であること を確認した。今後、本クライオスタットはBL35XUにお いて超伝導をはじめとする超低温でのフォノン物性に関 するユーザ実験に利用され、他の硬X線ビームラインで も超低温の放射光実験に共通機器として供される。

測定用コンピュータの更新による測定の高速化・高効率化

最初に、BL35XUでの測定装置及びその周辺環境について概略図を図2に示す。非弾性X線散乱実験では測定 用コンピュータを一台に集約している(図中A)。ユーザ (B)は、測定コンピュータ上のX端末にコマンドを入力す ることにより、各種装置(C1とC2。C1はコンピュータ に直接接続された装置でC2はSPring-8ネットワークシ ステムを介して制御する装置である)を動かし、カウン タで得られた情報を得る。得られた全データ(バックグ ランドで測定されたデータを含む)は随時外部公開サー バ(D)にアップロードしてSPring-8外に公開している。 X端末はspec (Certified Scientific Software社製)とい

図2 測定用コンピュータとその周辺の模式図。

う制御用ソフト内で動作しており、各機器への通信・制 御はマクロ (spec macro) と呼ばれる自作のプログラムに よりおこなわれている。

測定コンピュータ(A)は設置から数年が過ぎ、OS (Linux)のセキュリティ上問題が生じていた。また、マク ロはBL35XU建設当初に作成されたものを使用していた ため、通信速度の遅い環境に最適化されており、プログ ラム上無駄な部分が多くあった。そこで、測定用コンピ ュータ(ハードウェア)を交換し、最新のOS (Fedora からCentOSへ変更)、最新の制御ソフト (spec v.5から v.6へ変更)を導入することとした。更新前のマクロは 新しい制御ソフトと十分な互換性がなかったため、(互換 性がなかった箇所について)マクロを新たに作成した。 この際合わせて全マクロをチェックしていくつかの書き 換えをおこない、測定の高速化/高効率化をおこなった。 以下にその実例を2例示す。なお、(ユーザが操作する) コマンドは更新前後で(可能な限り)変更していない。 また、外部公開サーバ(D)へのアップロードも従来通り である。ユーザ・外部公開サーバに提供するデータの種 類も更新前後で変化していない。半年間の準備期間を経 て、夏期停止期間中に交換・更新作業をおこなった。

最初に高効率化の例を示す。BL35XU非弾性X線散乱 実験では非弾性散乱スペクトルを得るのに、エネルギー を掃引しながらカウンタの積算をおこなう。ただし、積 算時間に対して、実際の測定時間は長い。このような待 機時間(=(測定時間)—(積算時間))が存在するのは、 制御ソフト(spec)の処理時間があるためで、待機時間 中に制御ソフトは(すべての)カウンタデータを参照す るなどの作業を行なっている。更新前には非弾性X線散 乱スペクトルカウンタを例えば10秒積算させるために平 均11.5秒かかっていた(表1)。マクロの最適化をおこな い、不要な(測定に関与しない)制御ソフト作業を取り 除いた。この結果、更新後は10秒積算に要する測定時間 が平均10.4秒となり、待機時間を1.1(=1.5-0.4)秒減 らすことができた。この待機時間を測定時間に割り振る ことによって、より多くのデータ点を得ることができる ようになっている。具体的な例を図3に示す。図中は更 新前後での標準物質(PMMA)を用いた非弾性散乱スペク トル(生データ)である。どちらも-3から3 meVまでの エネルギー領域について、掃引を1.2 meV/minという条 件でおこなっている。図中の各測定点の積算時間は3秒 である。3秒積算に要する測定時間が更新に伴い4.4秒か ら3.4秒になったことで(表1)、図3の例ではこのエネ ルギー領域でのデータ点が71点から89点に増加してい る。これは、より多くのデータ点を同じ掃引条件で得る ことができるようになったことを示し、データの質が更 新前に比べて向上していることを意味する。

次に高速化の例を示す。図4は液体窒素モノクロ結晶 のエネルギースキャンスペクトルである。このスキャン は(非弾性X線散乱実験中)光学系の調整の際に必要な スキャンであり、スキャンではSPring-8ネットワークシ ステムを介してモータを制御しつつ測定をおこなってい る(図2中C2)。図中更新前後で測定点および積算時間 は同じで(測定点26点、各点につき0.5秒積算)、スペ クトルはほぼ変化しない。更新前ではこのスキャンに80 秒かかっていた(図4下)。この(長い)測定時間が必要 だった理由の一つとして、BL35XU建設当時は測定コン ピュータ-SPring-8ネットワークシステム間の通信が(現 在と比べ)遅く、測定コンピュータのマクロ上待機時間 を大きく設定する必要があったことがあげられる。今回

表1 制御コンピュータ更新前後における 非弾性X線散乱スペクトル測定所要時間の比較

	10秒積算	3秒積算
	に要する時間	に要する時間
	(平均值)	(平均值)
更新前	11.5秒	4.4秒
更新後	10.4秒	3.4秒

の更新の際に冗長な待機時間を削るなどのマクロの最適 化をおこなった結果、測定時間を31秒に短縮できた(図 4上)。これにより、より速く光学系の調整がおこなえる ようになっている。

> 利用研究促進部門 構造物性 II グループ 非弾性散乱チーム 内山 裕士、筒井 智嗣