BL14B1 QST極限量子ダイナミクスII

1. 概要

BL14B1は偏光電磁石を光源とし、SPring-8では唯 一となる白色光と単色光の両方が使えるビームライン である。主要光学系は2枚のX線全反射ミラーと定位置 出射2結晶分光器で構成される。白色X線の実験時に は、これらの光学素子は光軸上から退避される。高エ ネルギー白色X 線を利用した実験は高温高圧その場粉 末X線回折測定、および、分散型時分割XAFS測定であ り、新規機能性材料の合成条件探索、および、機能発 現機構の解明を行う。また、高エネルギー白色X線の 高い透過能を利用し、材料中の応力測定を行う。単色 X線を利用した実験はおもに粉末X線回折測定とXAFS 測定であり、合成された材料の平均構造から局所構造、 中距離秩序に至る精密な構造評価、および、化学状態 の評価を行う。白色X線と単色X線の測定を相補的・ 総合的に行うことにより1ビームラインでの材料開発研 究の完結が可能となる。本ビームラインでは放射光微 細構造解析拠点として独自研究のみならず、共同研究、 および、施設共用制度によるユーザー支援を行い、ひ ろく材料研究の発展に貢献することを目指す。

(齋藤 寛之、米田 安宏)

2. 高温高圧合成

高圧ステーションでは、キュービックマルチアンビル を用いた高温高圧実験が進められている。エネルギー 分散法による高温高圧下のその場粉末X線回折測定に より、合成条件の探索、および、最適化、合成反応機 構の解明に関する研究が行われている。新規機能性水 素化物を中心に研究を進めている^[1-4]。

鉄錯体水素化物に水素陰イオンを加えることで、こ れまで報告されている3d遷移金属錯体水素化物中で最 も高い重量水素密度を有する錯体水素化物を合成する ことに成功した。錯体水素化物は18電子則を満たすよ うに組成が制限されるため、錯イオンが決まると、陽 イオンの組み合わせが限定される。ここで、水素陰イ オンを錯体水素化物中に加えると、陽イオンの組み合 わせ数が増大し、組成の自由度が大幅に向上し、これ まで合成されていなかった水素化物が実現可能となる。 この方針に従い、第一原理計算によって合成可能であ ることが予測されたLi₃AlFeH₈の高温高圧合成を試み た^[1]。LiH、AlH₃、Feの混合粉末を5 GPa, 600℃で

図1 LiH、AIH₃、Fe 混合粉末を5 GPa, 600℃で水素化した 際に得られたその場粉末X線回折プロファイル。600℃ に加熱後約30分で理論計算予測された新規水素化物 Li₃AIFeH₈の単位格子で指数付け可能なブラッグピーク (図中丸印)の生成が観察された。

水素化した。放射光その場観察により得られた粉末X 線回折プロファイルの時間変化を図1に示す。第一原理 計算による構造最適化によって予想されたLi₃AlFeH₈ の生成をその場観察により確認した。高温高圧下で合 成されたLi₃AlFeH₈は常温常圧下に回収することが可 能であった。

放射光その場観察技術により開発された大容量試料 用高温高圧合成セルを用いて、中性子回折実験用の試料 合成を行うための技術を開発した。この技術をもとに数 10mg の9配位錯体水素化物Li₅MoH₁₁を合成し中性子 回折実験を行った。その結果MoのまわりにHが9個配 位した特異な構造を有することを明らかにした^[4]。

(齋藤 寛之)

3. 応力測定

構造材料における疲労・破壊メカニズム解明のためには、 多結晶粒で構成させる構造材料内の1結晶粒 (~10 µm)、さ らにその内部のひずみや転位密度分布の導出が必須であり、 そのような評価技術としては白色X線と2次元検出器の組み 合わせがもっとも簡便である。そこで2016年度も2015年

度より継続してJASRI検出器チームと協力し、現在開 発中の高エネルギー認識型X線画像検出器の評価を行っ た。JASRI検出器チーム担当の検出器の大型化に関し ては、2015年度に比べて素子面積が4倍大きい、CeTe を基板センサーとする大面積シングルモジュール型実 機 (ピクセルサイズ200 μm、ピクセル数190×200) の開発に成功し、Pilatusと比較して開発中の検出器が 高エネルギーに対して非常に敏感であることから幅広 いエネルギー範囲での利用が可能であることを確認し た^[5]。一方、測定技術開発を担当するJAEA側は、試 料を回転させる方法による新たな3次元イメージングの 手法開発を実施し、ラウエ斑点から結晶方位、および、 検出された回折強度をエネルギースペクトル解析する ことにより10⁻³程度の精度による格子定数の決定が可 能であることを明らかにした。2017年度は本手法を金 属材料に適用し、弾塑性変形における内部ひずみの導 出を目指す。

核融合炉用ダイバータの構造材料として期待される、 繊維強化型SiC複合材料(SiCfSiC)とタングステン (W)との接合材料の界面近傍の反応相をX線回折実験 で調べた。接合界面近傍のSEM観察で、接合熱処理下 でSiCfSiCが分解して拡散した、Cを含むW相(W-C相) やSiを含むW相(W-SiC)を確認したが、その相に関 する知見は未だ得られていなかった。そこで、高原子 番号の材料であるWに対して比較的透過力の高い、高 エネルギーX線を含む白色X線を用いて界面近傍領域 して、X線回折実験を行った。その結果、界面近傍領域 においては、複数のWC及びW₂Cのピークが確認でき、 W-Cが固溶相ではなく、W-Cによる化合物を形成する ことが分かった。一方で、W-Si化合物に相当するピー クは確認できず、SiがWに固溶していることを示唆す る結果を得た。

(安田 良、城 鮎美、菖蒲 敬久)

4. 表面回折計

BL14B1に設置されている κ 型回折計を用いて、X 線反射率測定により、イオン液体/電極界面のその場 構造解析を行った。イオン液体はカチオンとアニオン のみで構成される液体の有機化合物の塩であり、イオ ン液体/電極界面の様子は、水溶液/電極界面のそれと は全く異なるが、その詳細はまだ十分に理解されてい ない。そこで界面におけるイオン液体分子の配列構造 を、その場構造解析法の1つであるX線反射率測定に より解析した。X線反射率強度の電極電位依存性を測 定し、その結果を電気化学測定法の1つであるインピ ーダンス測定の結果を比較すると、インピーダンス測 定では可逆に界面のイオン液体分子の配列構造は変化 していることを示しているのに対して、反射率測定の 結果は、不可逆に変化していることを示していること がわかった。このことは、電極表面のごく近くに存在 するイオン液体分子のみが、可逆に配列構造を変えら れることを示唆している。

(田村 和久)

5. PDF

新規に導入した κ型回折計の最大の特徴は大型の2θ アームの位置再現性が飛躍的に向上したことである。 これによってバックグラウンドの除去の際、ラグラン ジュ補間の必要がなくなり、PDF解析におけるデータ セットの作成が容易になった。また、PDF解析だけで なく、Bragg反射の測定に置いても精密に測定できるよ うになったため、リートベルト解析による構造パラメ ーターの信頼性が高まった。図2(a)は高エネルギー粉 末X線回折で得られたニオブ酸カリウムのリートベルト 解析の結果である^[6]。非常に良いフィット結果が得ら れている。また、この結果から結晶構造を描画したも のが図2(b) である。さらにMEM解析によって得られ た電子密度マッピングの結果が図2(c)である。このよ うにPDF解析として利用する同一のデータセットで従 来的な結晶構造解析を行うことができるようになった。 同一のデータセットで得られた平均構造はPDF解析の 初期パラメーターとしても有効で、PDF解析において も利便性が高まっている^[7,8]。

(米田 安宏)

6. XAFS

BL14B1では、白色X線実験ハッチにおいてエネルギ ー分散型光学系によるXAFS測定が行われていると共 に、単色X線実験ハッチにおいて通常型のXAFS測定が 実施されている^[9-13]。高速実時間分割測定から低濃度 測定まで、各種XAFS測定を実施できる環境が整えられ ている。

エネルギー分散型光学系では、様々なその場観測条 件を整え、各種反応系における実時間分割XAFS測定が 行われている。ガスフローメータ、バルブ、ポテンシ オスタット、インジェクター等の遠隔操作システムを 常備させ、ガス雰囲気下反応、電極反応、溶液滴下に よる錯形成反応等を対象とした時分割測定を実施して きている。2016年度においては、水素安全対策の1つ である水素再結合(水生成反応)触媒に対して、反応 中におけるPd触媒の構造変化を2 Hz程度の時間分解 能で観測した。結果、水素再結合反応中にPd触媒の水

図2 新規回折計の導入によってリートベルト解析などの従来型の結晶構造解析も高エネルギーX線回折によって得られたデータ セットを用いて行うことができるようになった。(a) KNBO3のリートベルト解析の結果。(b) 解析で得られた結晶構造を描画。(c) MEM解析で得られた電子密度マッピング。リートベルト解析にはRIETAN-FPを、図の描画にはVESTAを使用。

Nb

Nb

素化は起こらず、触媒の酸化膜表面上で反応が進行す ることが分かった^[13]。

Nb

Nb

放射性Csが吸着した土壌の減容化へ向けて、物理粉 砕処理を施した際のCs吸着状態に対して、蛍光検出器 として36素子SSDを使用し、10 ppmレベルまでの濃 度依存局所構造解析を実施した。その結果、Cs元素が 粘土鉱物中に安定して存在するには、粘土の層構造が 重要であることが判明し、この層構造を破砕すること でCsを選択的に回収することができる可能性が見出さ れた。

(松村 大樹、辻 卓也、小林 徹)

参考文献

- [1] H. Saitoh, S. Takagi, T. Sato, Y. Iijima, S. Orimo: Int. J. Hydro. Energy, 42, (2017) 22489-22495.
- [2] H. Saitoh, A. Machida, H. Sugimoto, T. Yagi, K. Aoki: J. Alloys Compd., 706, (2017) 520-525.
- [3] T. Ogata, T. Sato, S. Takagi, H. Saitoh, Y. Iijima,
 B. Paik, S. Orimo: *Mater. Trans.*, 58, (2017) 157-159.
- [4] S. Takagi, Y. Iijima, T. Sato, H. Saitoh, K. Ikeda, T. Otomo, K. Miwa, T. Ikeshoji, S. Orimo: *Sci. Rep.*, 7, (2017) 44253.
- [5] H. Toyokawa, C. Saji, M. Kawase, S. Wu, Y. Furukawa, K. Kajiwara, M. Sato, T. Hirono,

A. Shiro, T. Shobu, A. Suenaga, H. Ikeda: *Journal* of *Instrumentation*, **12**, (2017) C01044.

- [6] T. Nakai, M. Kobune, T. Nagamoto, T. Kikuchi,
 Y. Yoneda: *Trans. Mat. Res. Soc. Japan*, **41**, (2016)
 251-254.
- [7] Y. Yoneda, T. Nagamoto, T. Nakai, M. Kobune: *Trans. Mat. Res. Soc. Japan*, **41**, (2016) 197-200.
- [8] Y. Yoneda, R. Aoyagi, D. Fu: Jpn. J. Appl. Phys.
 55, (2016) 10TC04.
- [9] T. Sakamoto, H. Kishi, S. Yamaguchi, D. Matsumura, K. Tamura, A. Hori, Y. Horiuchi, A. Serov, K. Artyushkova, P. Atanassov, H. Tanaka: *J. Electrochem. Soc.*, **163**, (2016) H951.
- [10] R. Lang, T. Li, D. Matsumura, S. Miao, Y. Ren, Y.-T. Cui, Y. Tan, B. Qiao, L. Li, A. Wang, X. Wang, T. Zhang: *Angew. Chem. Int. Ed.*, **55**, (2016) 16054.
- T. Yaita, D. Matsumura, T. Kobayashi, S. Suzuki,
 T. Tsuji, M. Okumura, M. Machida, R. Motokawa,
 H. Mukai, T. Kogure: *Global Environ. Res.*, **20**, (2016) 33.
- T. Sakamoto, T. Masuda, K. Yoshimoto, H. Kishi,
 S. Yamaguchi, D. Matsumura, K. Tamura, A.
 Hori, Y. Horiuchi, A. Serov, K. Artyushkova, P.
 Atanassov, H. Tanaka: *J. Electrochem. Soc.*, 164, (2017) F229.
- [13] D. Matsumura, M. Taniguchi, H. Tanaka, Y. Nishihata: Int. J. Hydrog. Energy, 42, (2017) 7749.

国立研究開発法人量子科学技術研究開発機構 量子ビーム科学研究部門 関西光科学研究所放射光科学研究センター 高圧・応力科学研究グループ 齋藤 寛之、安田 良、城 鮎美 国立研究開発法人日本原子力研究開発機構 物質科学研究センター 放射光エネルギー材料研究ディビジョン 環境・構造物性研究グループ 米田 安宏、田村 和久、松村 大樹、辻 卓也 放射光分析技術開発グループ 菖蒲 敬久 アクチノイド化学研究グループ