BL14B1 極限量子ダイナミクスⅡ

1. 概要

BL14B1は偏向電磁石を光源とし、白色光と単色光の 両方が使えるビームラインである。主要光学系は2枚の X線全反射ミラーと定位置出射2結晶分光器で構成され る。白色X線の実験時には、これらの光学素子は光軸上 から退避される。高エネルギー白色X 線を利用した実 験は高温高圧その場粉末X線回折測定、および、分散 型時分割XAFS測定であり、新規機能性材料の合成条 件探索、および、機能発現機構の解明を行う。また、高 エネルギー白色X線の高い透過能を利用し、材料中の応 力測定を行う。単色X線を利用した実験はおもに粉末X 線回折測定、X線反射率測定、および、XAFS測定であ り、材料の平均構造から局所構造、中距離秩序に至る精 密な構造評価、イオン液体と電極界面の構造解析、およ び、化学状態の評価を行っている。白色X線と単色X線 を使った実験を相補的・総合的に行うことにより1ビー ムラインでの材料開発研究の完結が可能となる。本ビー ムラインでは放射光微細構造解析拠点として独自研究の みならず、共同研究、および、施設共用制度によるユー ザー支援を行い、ひろく材料研究の発展に貢献すること を目指す。

(齋藤 寛之、米田 安宏)

2. 高温高圧合成

高圧ステーションでは、キュービックマルチアンビル を用いた高温高圧実験が進められている。エネルギー分 散法による高温高圧下のその場粉末X線回折測定によ り、合成条件の探索、および、最適化、合成反応機構の 解明に関する研究が行われている。新規機能性水素化物 を中心に研究を進めている。また、高温高圧下での液体 の構造についての研究も進められている^[1]。

これまでは水素化が困難と考えられてきたアルミ合金 を対象として新規水素化物の合成を試み、Al-Co合金の 新規水素化物の合成に成功した。アルミニウムとコバ ルトの粉末をモル比2:1で混合したものを出発物質とし て用いた。混合粉末を室温で9 GPaまで加圧した後に、 750℃まで100℃/minで加熱し水素流体中に保持し、反 応過程を放射光その場観察したところ、合金とは異なる 構造への変化が観察され、新規水素化物が得られている ことが分かった(図1)。合成された水素化物は減圧過 程で水素を放出すること無く、常圧下に回収可能であっ

図1 アルミニウムとコバルトの粉末をモル比2:1 で混合した 粉末を圧力9 GPa、温度750℃の条件で水素化した際の 放射光その場粉末X線回折測定結果。□は高圧セル、○ はAI、△はCo、▽はCoH、■AI₅Co₂、●は水素化物か らのブラッグ反射をそれぞれを表す。

た。回収した合金水素化物を常圧で加熱したところ約 170℃で水素放出が観察された。現在は単相の合成条件 を決定できていないため、単相試料の合成条件の探索を 進めている。単相が得られた場合、放射光と中性子回折 実験を行い、構造決定を試みる予定である。Al-Co系以 外のアルミ合金の水素化についても研究を進めている。 (齋藤 寛之)

3. 応力

構造材料における疲労・破壊メカニズム解明のために は、多結晶粒で構成させる構造材料内の1結晶粒(~10 μ m)、さらにその内部のひずみや転位密度分布の導出が 必須であり、そのような評価技術としては白色X線と2 次元検出器の組み合わせが最も簡便である。2017年度 はJASRI情報処理推進室が開発してきたエネルギー認 識型X線画像検出器を利用し、JASRI、QST、JAEAが 協力して実材料への適用・評価を行った。JASRI検出器 チーム担当の検出器の高度化に関しては、ピクセル毎の 読み出し回路のオフセット電圧および前置増幅器の利得 を個別に調整する手法を確立し、標準蛍光試料を用いて 20~150 keVの範囲で良好なエネルギー線形性が得られ ることを確認した。これにより、回折スポットのエネル ギーを(Δ E/E=)10⁻³以下の精度で精密に決定できる ことを実証した。また、データ収集ソフトウエアも実利 スルホニル)アミド([HMIM]TFSA)を電解液とし、 Si (100) 基板を電極とした。反射率強度の電極電位依 存性を測定した結果から、[BMIM]TFSAの場合は、界 面のイオン液体分子は不可逆的な振る舞いを示すのに対 して、[HMIM]TFSAの場合は、可逆的な振る舞いを示 すことが分かった。インピーダンス測定の結果では、電 極表面に吸着しているイオン液体分子は、どちらのイオ ン液体の場合でも可逆に振る舞うことから、この結果 は、電極の極近傍では、構造の違いに関係なくイオン液 体分子は電極の表面電荷に束縛されるのに対して、沖合 に行くと、イオン液体分子同士の相互作用が主として構 造を決めていることを示していると考えられる。

5. PDF

BL14B1では高エネルギーX線回折によって得られた 粉末X線回折パターンから、リートベルト解析とPDF 解析の両方を行うことができる。リートベルト解析は最 新版のRIETAN-FPでは煩わしい異常分散項の入力が自 動的に行われるようになったため、利便性が大いに向上 した。なお、最新版のRIETAN-FPは原則として開発者 の泉富士夫先生の講習会に参加しなければ入手すること はできないのだが、泉先生のご厚意によってBL14B1の κ型回折計を使用したユーザーへの再配布が許されて いる。リートベルト解析によって得られた平均構造は、 PDF解析の際にも有力な局所構造モデルとなる。また、 同じデータセットで平均構造と局所構造解析を行うこと によって、平均構造と局所構造との差異をより厳密に 抽出することができるようになり、BaTi₂O₅^[2], PbZr₁xTixO₃^[3], Na₀₅K₀₄₅Li₀₀₅NbO₃^[4]などに適用されている。 (米田 安宏)

6. XAFS

BL14B1では、白色X線実験ハッチにおいてエネル ギー分散型光学系によるXAFS測定が行われていると 共に、単色X線実験ハッチにおいて通常型光学系による XAFS測定が実施されている^[5-8]。高速実時間分割測定 から低濃度測定まで、各種XAFS測定を実施できる環 境が整えられている。

エネルギー分散型光学系では、様々なその場観測条件 を整え、各種反応系における実時間分割XAFS測定が行 われている。ガスフローメータ、バルブ、ポテンシオス タット、インジェクター等の遠隔操作システムを常備さ せ、ガス変換反応、溶液中電極反応、配位子置換反応等 を対象とした時分割測定を実施している。2017年度に おいては、アルカリ溶液中のPt電極触媒に対して、サ イクリックボルタンメトリーを実施しながらPt L₃吸収

用を見据えて一新し、サンプルおよび検出器設置ステー ジとの連動測定を迅速に行えるように改良した。一方、 測定技術開発を担当するQST・JAEA 側は、2016年度 に開発した3次元イメージングの手法を利用し、複数の 金属材料に適用した。(1) 4点曲げした銅多結晶試料: ラウエ回折を測定し、検出された回折強度をエネルギー スペクトル解析した。その結果、回折スポット内ではエ ネルギーが60~120 keVの領域で分布していた。格子面 間隔はスポット内でほぼ一定で、それぞれ2.106 Å、1.807 Å、1.278 Åであり、これらは銅の主要3方向に対応する Cu 111、Cu 200、Cu 220の標準値と一致していること が明らかになった。(2) 4点曲げした銅単結晶試料:弾 性変形過程のラウエ回折を測定した結果、負荷ひずみの 値が大きくなるにつれ、各ラウエスポットが広がってい く様子が捉えられた。また、スポット毎に広がりの度合 いが異なっており、回折面による変形の難度が異なって いた。さらに、弾性変形から塑性変形へ変化した際に、 スポットの広がりの他に結晶方位の回転も確認できた。 (3) 3次元イメージング手法開発:試料を回転させずに カメラ長を変化させてラウエ回折像を測定する3次元イ メージング手法開発を実施した。カメラ長を変化させる と、ラウエスポットの形状は変化しないが、見えている 視野がより広角になる。カメラ長を変えて撮影された同 ーラウエスポットを幾何学的に解析することで、各ラウ エスポットに対する試料中の奥行方向の情報を得ること を可能にした。さらに、試料を放射光に対して垂直方向 に動かすことで、像を得ることが可能になった。今後は さらに解析を進め、求めたひずみの精度についての評価 を実施する。

(安田 良、城 鮎美、菖蒲 敬久)

4. 表面回折計

BL14B1に設置されている κ型回折計を用いて、X線 反射率測定により、イオン液体/電極界面のその場構造 解析を行った。イオン液体はカチオンとアニオンのみで 構成される液体の有機化合物の塩であり、イオン液体/ 電極界面の様子は、水溶液/電極界面のそれとは全く異 なるが、その詳細はまだ十分に理解されていない。そこ で界面におけるイオン液体分子の振る舞いを、その場構 造解析法の1つであるX線反射率測定により追跡した。 今回は、側鎖の長さが異なるイオン液体を電解液に用 い、イオン液体分子の構造の違いが界面での振る舞いに どのような影響を与えるかを調べた。カチオンのイミダ ゾリウム環にn-ブチル基を持つ1-ブチル-3-メチルイミ ダゾリウムビス(トリフルオロメチルスルホニル)アミ ド([BMIM]TFSA)と、n-ヘキシル基を持つ1-ヘキシ ル-3-メチルイミダゾリウムビス(トリフルオロメチル 端のXAFSを連続的に観察するCV-XAFS測定を行い、 Pt電極触媒の酸素還元反応における律速過程が電位条 件によって異なることを明らかにした^[6]。

通常型光学系としては、蛍光検出器として36素子 SSDを使用して、低濃度XAFS測定を実施している。その1つとして、放射性Csが付着した土壌の安定的保管 や減容化へ向けて、各種粘土鉱物に対して微量のCsを 収着させた際のCs K吸収端での局所構造測定を行って いる。粘土の層構造とCsの収着状態との関連性を見出 すことで、Csの移動度評価や選択的回収に繋げていく べく、研究を継続している。

(松村 大樹)

References:

- [1]K. Fuchizaki, H. Nishimura, T. Hase, H. Saitoh: J. Phys.: Condens. Matter, 30 (2018) 045401.
- [2]S. Tsukada, Y. Fujii, Y. Yoneda, H. Moriwake, A. Konishi, Y. Akishige: *Phys. Rev. B*, 97 (2018) 024116.
- [3]Z. Wang, N. Zhang, H. Yokota, A. M. Glazer, Y. Yoneda, W. Ren, Z.Ye: *Appl. Phys. Lett.*, **113** (2018) 012901.
- [4] Y. Yoneda, E. Takata, H. Nagai, T. Kikuchi, M. Morishita, M. Kobune: *Jpn. J. Appl. Phys.*, 56 (2017) 10PB07.
- [5] H. Itoi, H. Nishihara, S. Kobayashi, S. Ittisanronnachai, T. Ishii, R. Berenguer, M. Ito, D. Matsumura, T. Kyotani; J. Phys. Chem. C, 121 (2017) 7892.
- [6]S. Kusano, D. Matsumura, K. Asazawa, H. Kishi, T. Sakamoto, S. Yamaguchi, H. Tanaka, J. Mizuki; J. Electron. Mater., 46 (2017) 3634.
- [7] Y. Sekine, R. Motokawa, N. Kozai, T. Ohnuki, D. Matsumura, T. Tsuji, R. Kawasaki, K. Akiyoshi; *Sci. Rep.*, 7 (2017) 2064.
- [8] H. Wang, J. Isobe, T. Shimizu, D. Matsumura, T. Ina,
 H. Yoshikawa; J. Power Sources, 360 (2017) 150.

国立研究開発法人量子科学技術研究開発機構 量子ビーム科学研究部門 関西光科学研究所 放射光科学研究センター 高圧・応力科学研究グループ 安田 良、齋藤 寛之、城 鮎美

国立研究開発法人日本原子力研究開発機構 物質科学研究センター 放射光エネルギー材料研究ディビジョン 環境・構造物性研究グループ 米田 安宏、田村 和久、松村 大樹

放射光分析技術開発グループ

菖蒲 敬久