BL28XU 革新型蓄電池実用化促進基盤技術開発

電気自動車やプラグインハイブリット車などに代表さ れる次世代自動車の研究開発は、二酸化炭素削減のため の切り札となる技術開発の1つである。この次世代自動 車に共通するコア技術が蓄電池技術であり、蓄電池技術 の優劣が次世代自動車の市場競争力を左右すると考えら れる。そこで、我々は現状のリチウムイオン蓄電池(Li ion secondary battery: LIB) を超えるエネルギー密度を 持ち、LIB並みの耐久性や寿命を有するポストLIBの研 究開発を目的に、NEDOの受託研究として2016年から 革新型蓄電池実用化促進基盤技術開発(RISING2)事業 を行っている。このRISING2は、革新型蓄電池先端科 学基礎研究(RISING)事業の後継事業と位置付けられ、 RISINGで得られた革新型蓄電池の知見を活用し、ナノ 界面制御蓄電池や硫化物蓄電池、亜鉛空気蓄電池などの 4つの革新型蓄電池を選択して、2030年の車載用蓄電池 としての実用化を目指して研究を行っている。RISING では、これまでブラックボックスであった蓄電池内部 の反応を直接観察するための技術開発のために、2011 年よりSPring-8のBL28XUに革新型蓄電池研究専用の ビームラインを建設・運用し、蓄電池反応分析のための 高度解析技術の確立とその電池反応分析への展開を推進 してきた^[1]。そして、エネルギー分散共焦点回折技術に よる実電池反応^[2,3]や、X線回折分光解析による活物質 内部の格子位置毎の蓄電池反応観察に基づく蓄電池劣化 解析^[4-6]や、硬X線光電子分光分析による電極表面被膜 の役割解析^[7]などの技術開発を行ってきた。

RISINGでの成果に基づいて、RISING2では幅広い時 空間スケールにおいて(1)反応分布発生要因解明、(2) 活物質反応解析と非平衡挙動解明、(3)電極/電解質界 面現象解明の3つの蓄電池研究課題に整理し、これらの 課題解決に向けた位置分解能の向上や測定効率の向上に よる測定時間の改善のための技術開発を進めている。さ らに、RISING2では新たに(4)電解液、電解質、これ らの物質と電極界面の非晶質界面層などのランダム系物 質形成機構解明と、(5)蓄電池内部で発生する熱力学的 あるいは物理的不安定化現象解明のための技術開発に取 り組んでいる。

フォトンカウンティング型の高エネルギー対応2次 元検出器Pilatus3X CdTe 300 KWの導入・整備 LIBを超える高いエネルギー密度を次世代蓄電池で実

現するために、亜鉛空気蓄電池では高エネルギー密度の 必須要件である亜鉛極の厚膜化に取り組んでおり、300 Wh/kgを実現するためには1.5 mmもある極厚膜電極を 使いこなす必要がある。また、車載用蓄電池においても 数cmスケールの実電池の反応分布の分析が求められて いる。このような分厚い試料を非破壊で測定するために は、高い物質透過能をもつ高エネルギーが求められる が、従来のSi素子を用いた検出器ではエネルギーが高 くなるほど素子感度が悪くなるため、測定に時間がか かってしまう。そこで、新規にCdTe素子を用いたフォ トンカウンティング型の2次元検出器Pilatus3XCdTe 300K-Wを導入・整備した。

Pilatus CdTe 300 KW (CdTe素子) と Pilatus 100K (Si 素子)の比較のために、入射光エネルギー38 keV と 25 keV で SiO₂の XRD 測定を行い、38 keV では Si素子の 16倍も高感度に回折光を検出でき、25 keV でも Pilatus CdTe 300 KW のカメラ長が Pilatus 100 Kのカメラ長よ りも 290 mm も長い条件で、3.7倍に強度が増加するこ とを確認した。さらに、この検出器は Si素子 Pilatus 100 Kの長手方向に3つモジュールを重ねることで3倍の角 度範囲が測定可能であり、一度に複数の回折線を測定で きる。以上のように、高エネルギー X線領域を有効に 活用してより実用的な蓄電池内部での反応を追跡できる 基盤を整備した。

2. VS4正極材料の充放電メカニズムの解明

近年、高い理論エネルギー密度を有する硫化物蓄電 池が次世代の高容量蓄電池として注目されている。そ の中でも金属多硫化物であるVS4は、2Vのプラトー電 位と高い理論容量(1195 mAh g⁻¹)を有し、遷移金属 を含むことで単体硫黄などに比べ高い導電性を示し、ま た金属一硫黄結合を有することで電解液中への溶出が抑 制されるという利点を持つ。これまでVS4は負極材料と して研究が盛んにされてきたが、VS4を正極材料として 用いたLi/金属硫化物蓄電池を実現するためには、正極 として利用した際の充放電メカニズムを明らかにする 必要がある。そこで、我々は炭素材を含まないVS4を真 空熱処理により合成し、正極材料として使った際の充 放電メカニズムをX線全散乱による二体分布関数(pair distribution function: PDF)法とV K-edge、S K-edge XAFSを用いて調べ、Li/金属硫化物蓄電池の正極材料 としてVS₄が有望であることを明らかにした^[8]。真空下 400℃の熱焼成により合成したVS₄は単斜晶構造を持ち、 平均粒径8 μmの針状形状を有する。このVS₄を合剤電 極にして3 Vから1 Vの範囲で充放電操作を行い、Li量 を制御した各 Li_xVS_4 (X = 1, 3 or 5) 電極を作製した。 PDF解析から2.0、2.4、2.8 ÅにそれぞれS-S結合、V-S 相関、V-V相関に帰属されるピークが現れた。初回放電 時の化学組成Li₃VS₄のときに6Åを超える長距離秩序の ピーク強度が下がり、それ以降の充放電過程でピーク強 度がもとに戻らなかったことから、初回のLi挿入過程 で低結晶性構造が生成していることがわかった。一方、 6 Å以下の近距離秩のピークは残っていることから、部 分的に配位数や結合長は維持されていることがわかっ た。さらに、初回放電過程では2.0 ÅのS-S結合のピー ク強度が減少し、S-S結合の切断が示唆され、初回充電 過程ではS-S結合のピーク強度が増加し、S-S結合が再 生成されるとともにV-S相関の2.4 Åのピークが初期の VS₄よりも広がり、V原子周りの配位環境が変わってい ることが示唆された。XAFS測定から充放電容量に対す る吸収端の変化量がVに比べてSのほうが大きかったた め、充放電容量を担っているものは主にS原子による酸 化還元反応だと示唆された。以上のように、PDF解析 とV K-edge、S K-edge XAFSを組み合わせることで、 炭素材を含まないVS4の充放電メカニズムに関して明ら かにすることができた。これらの成果は、革新型蓄電池 の今後の電極材料設計に適用できる重要な知見である。 また、これらのランダム系の構造分析技術は、革新型蓄 電池の充放電メカニズムを明らかにするうえで、なくて はならない必須のツールとなることが期待される。

3. Li₂SnS₃とLi₃NbS₄の固溶体電極の開発

Li含有硫化物はリチウムイオン伝導体や電極活物質 として研究が盛んに行われている。その中でも、近年 リチウムスズ硫化物が高リチウムイオン伝導固体電解 質として注目が集まっている。例えば、Li₂SnS₃は規則 的な岩塩構造を伴った単斜晶相であることが知られて いる。一方、近年我々がメカノケミカル法で合成した Li₂TiS₃やLi₃NbS₄は立方晶岩塩構造を持ち、2次電池の 正極材料として400 mAh g⁻¹の可逆容量を示すことを 明らかにしてきた^[9]。メカノケミカル法は、アモルファ ス相や高い対称性をもつ結晶構造を有する準安定構造 を作り出すのに有効な手法である。そこで、我々は高 い対称性を持つ立方晶Li₂SnS₃を合成し、同じく立方晶 のLi₃NbS₄と固溶化した際の電極特性を調べた^[10]。メ カノケミカル法により合成したLi_sSnS₃は単斜晶のXRD ピークと異なり、立方晶岩塩構造を示した。この材料 の放電特性は、低い電子伝導性により25 mAh g⁻¹程と

小さかったため、高い電子伝導性をもつLi₃NbS₄と固溶 体を作ることで充放電容量の向上を試みた。その結果、 XRDパターンとPDF解析結果からLi₃NbS₄とLi₂SnS₃は 全領域にわたって立方晶岩塩構造の固溶体を形成する ことがわかった。さらに、PDF解析からNb-richな領域 で4.0、5.3 Åあたりに見られる弱い相関から、平均的な 原子位置はFm-3m空間群の4a、4bサイトにいるが、局 所的にはそれぞれの位置からわずかに歪んだ位置にいる ことが示唆された。この固溶体の充放電容量を調べてみ ると、Li_sSnS₂量に比例して充放電容量の低下は見られ ないことから、2 V程度の電圧領域ではSnやNbではな く、S原子が主に酸化還元反応を担っていることが示唆 された。また、Sn量が0.2と0.43では電子伝導性が10⁻⁴ S cm⁻¹に対して、Sn量が0.69では10⁻⁶S cm⁻¹台、1で は10⁻⁷S cm⁻¹台となることから、この系では電子伝導 性に依存して容量が変化していると考えられる。以上の 結果より、電子伝導性が高いLi₃NbS₄をLi₂SnS₃に固溶さ せて電子伝導性を向上させることで、Li₂SnS₃のS原子 の酸化還元反応を活性化することができた。

謝辞

本稿で取り上げた研究開発は、NEDOの革新型蓄電 池実用化促進基盤技術開発事業(RISING2)による支援 を受け実施した。

参考文献

- H. Tanida, K. Fukuda, H. Murayama, Y. Orikasa, H. Arai, Y. Uchimoto, E. Matsubara, T. Uruga, K. Takeshita, S. Takahashi, M. Sano, H. Aoyagi, A. Watanabe, N. Nariyama, H. Ohashi, H. Yumoto, T. Koyama, Y. Senba, T. Takeuchi, Y. Furukawa, T. Ohata, T. Matsushita, Y. Ishizawa, T. Kudo, H. Kimura, H. Yamazaki, T. Tanaka, T. Bizen, T. Seike, S. Goto, H. Ohno, M. Takata, H. Kitamura, T. Ishikawa, T. Ohta and Z. Ogumi, J. Synchrotron Radiat. 21, 268 (2014).
- [2]H. Murayama, K. Kitada, K. Fukuda, A. Mitsui, K. Ohara, H. Arai, Y. Uchimoto, Z. Ogumi and E. Matsubara, J. Phys. Chem. C 118, 20750, (2014).
- [3]村山美乃,北田耕嗣,福田勝利,放射光 28,161 (2015).
- [4]T. Kawaguchi, K. Fukuda, K. Tokuda, K. Shimada, T. Ichitsubo, M. Oishi, J. Mizuki and E. Matsubara, J. Synchrotron Radiat. 21, 1247 (2014).
- [5]T. Kawaguchi, K. Fukuda, K. Tokuda, M. Sakaida, T. Ichitsubo, M. Oishi, J. Mizuki and E. Matsubara, *Phys. Chem. Chem. Phys.* **17**, 14064 (2015).

- [6]河口智也,福田勝利,市坪哲,大石昌嗣,水木純一郎,松原英一郎,放射光 28,124 (2015).
- [7]K. Shimoda, T. Minato, K. Nakanishi, H. Komatsu, T. Matsunaga, H. Tanida, H. Arai, Y. Ukyo, Y. Uchimoto and Z. Ogumi, *J.Mater. Chem. A* 4, 5909 (2016).
- [8]Kazuto Koganei, Atsushi Sakuda, Tomonari Takeuchi, Hikari Salaeve, Hironori Kobayashi, Hiroyuki Kageyama, Tomoya Kawaguchi, Hisao Kiuchi, Koji Nakanishi, Masashi Yoshimura, Toshiaki Ohta, Toshiharu Fukunaga, and Eiichiro Matsubara, *Solid State Ionics* 323, 32 (2018).
- [9]Atsushi Sakuda, Tomonari Takeuchi, Kazuhiro Okamura, Hironori Kobayashi, Hikari Sakaebe, Kuniaki Tatsumi, and Zempachi Ogumi, *Scientific Reports* 4, 4883 (2014).
- [10] Atsushi Sakuda, Kentaro Kuratani, Tomonari Takeuchi, Hisao Kiuchi, Tomoya Kawaguchi, Masahiro Shikano, Hikari Sakaebe, and Hironori Kobayashi, *Electrochemistry* 85(9), 580 (2017).

京都大学産官学連携本部

木内 久雄