実験ステーション(共用ビームライン)

BL39XU 磁性材料

1. 概要

BL39XUは、磁気散乱・吸収実験ステーションと分光分 析実験ステーションが併設されていた共用ビームラインで あったが、2002年後期から分光分析実験ステーションが独 立して新たな展開を目指すためにBL37XUに移ることが決 定した。それに伴い、これまでの「生体分析ビームライン」 という名称が「磁性材料ビームライン」へと変更された。

2000年1月から2001年3月にかけて、BL39XUでは以下の 点についてのスタディおよびステーションのアップグレー ドが行われた。ビームラインでは、(1)37 keV以上の高エ ネルギー領域における吸収測定のスタディ、(2)新型ピン ポスト分光結晶の導入とその評価、(3)ミラーベント機構 の導入と調整、(4)偏光XAFS測定のための光学系連携駆 動システムの構築が行われた。また実験ステーションでは、 (1)磁気吸収実験に用いるためのHeクライオスタット用試 料ホルダーの作製、(2)再凝縮装置付10 T超伝導磁石の納 入、(3)蛍光X線検出器としてのマルチグリッド型Lytle検 出器、およびAu/Siフォトダイオードの導入、(4)蛍光X線 ホログラフィー装置の導入、(5)簡易2次元ビームモニター (デジタルCCD+プラスチックシンチレータ)の導入、(6) Kirkpatrick and Baezミラーのテストの開始、(7)波長分 散型分光装置としてX線CCDカメラが導入された。

本稿では前述項目の内容を簡潔に記述するとともに、 BL39XUの2001年3月現在の状況を示す。

2. ビームラインおよび光学系

BL39XUの挿入光源(ID)はSPring-8標準である真空 封止型アンジュレータであり、IDのギャップ値を8.6~50 mmの間で調節することによって5~70 keVのX線を発生 することができる。BL39XUのIDの特性を表1に示す。分 光器は回転傾斜型Si 111二結晶分光器であり、Si 111反射 を利用することによって5~37 keVのX線を実験八ッチに 導入することができる。11 keV以下のX線を利用する場合 には、高次光を除去するためにPtコートミラーを利用する。 また、他のビームラインにない特徴として、透過型ダイヤ モンド移相子を標準的に設置しているビームラインである ことが挙げられる(2001年3月現在)。この移相子を利用し て水平直線偏光を垂直直線偏光、円偏光、または楕円偏光 に切り替えることができる。BL39XUで得られるX線の性 質を表2に示す。

表1 BL39XUの挿入光源の特性

Туре	In-vacuum undulator
Undulator period	32 mm
Number of periods	140
Tunable range	5-70 keV (fundamental to 5th)
Peak brilliance	$2 \times 10^{19} \text{ ph/s/mrad}^2/\text{mm}^2/0.1\% \text{ b.w.}$ (100 mA)
Total power	11 kW (at 5 keV, <i>K</i> =2.3)
Power density	470 kW/mrad ²

表2 BL39XUで得られるX線の性質

5-37 keV	
2×10^{-4}	
$4.4 \times 10^{13} \text{ ph/s} *$	
< 0.1 mrad	
$0.6 \times 2.0 \text{ mm}^2 (\text{V} \times \text{H})^{**}$	
99.9 %	
> 90 % ***	
	5-37 keV 2×10^{-4} $4.4 \times 10^{13} \text{ ph/s } *$ < 0.1 mrad $0.6 \times 2.0 \text{ mm}^2 (\text{V} \times \text{H}) **$ 99.9 % > 90 % ***

* XY slit at front-end $1.0 \times 1.0 \text{ mm}^2$, X-ray energy 10 keV

** XY slit at front-end $1.0 \times 1.0 \text{ mm}^2$, X-ray energy 7.74 keV

*** using a diamond X-ray phase retarder

2·1.高エネルギーXAFSのスタディ

BL39XUで37 keV以上のエネルギーにおける、高エネル ギーXAFS測定が可能かどうかのスタディを行った。この 場合、IDの高調波を用い、Si 333などの高次反射と適当な フィルターを組み合わせる必要がある。テストケースとし て、IDの3次光 + Si 333 + AIフィルター7 mm (ケースA) およびIDの5次光 + Si 333 + AIフィルター5 mm (ケースB) による、Sm₃Fe₅O₁₂のSm K-吸収端(E₀ = 46.834 keV)の 吸収測定を行った。その結果を図1に示す。比較的S/Nの よいXAFSスペクトルが得られている。この図からはわか りにくいが、ケースAの方がケースBよりも若干S/Nの点 で劣っている。この理由は入射光強度の相違に関係してお り、統計精度によるものである。ケースAとBの相違は、 Si 111反射による低エネルギー成分の割合であり、ケース Aの方がケースBよりも約7倍多く低エネルギー成分を含ん でいる。このため、ケースBではAIフィルターが薄くても、 低エネルギー成分は十分落とすことができる。イオンチェ ンバーの信号から入射X線のフォトン数を計算すると、ケ ースAでは1.5×10⁸ ph/sec、ケースBで6.7×10⁸ ph/secと 見積もられる。これは偏向電磁石を光源としたXAFSビー ムラインBL01B1で得られる1.7×10⁹ ph/secよりも強度が 小さい。この理由として、BL01B1では分光結晶の反射面 がSi 311であることや、それによってフィルターを必要と しないこと、また、BL39XUの第一結晶の結晶性に問題が 残されているためであることが挙げられる。

図1 Sm₃Fe₅O₁₂におけるSm K-吸収端の吸収スペクトル。ID の3次光 + Si 333反射 + Al 7 mm、およびIDの5次光 + Si 333 反射 + Al 5 mmによる結果。

BL39XUでの高エネルギーXAFS測定は、スペクトルの 測定は可能であることが示されたが、AIフィルターを必 要とするために偏向電磁石のビームラインよりもフラック スの点で不利であると言える。しかしながらビームサイズ は偏向電磁石のビームラインの数分の1と小さいために、 小さなビームを必要とするXAFS測定には有効である。 BL39XUを利用した高エネルギーXAFSを実用的なものと するためには、分光結晶Si 311の導入が必要である。

2.2.新型ピンポスト分光結晶の導入とその評価

2000年9月に新型ピンポスト結晶を導入した。BL39XU では、1997年10月に供用開始されて以来のモノクロメータ ー結晶の交換である。この新型結晶の主な変更点は、ピン ポスト接合に用いている材質をAIからAuに変更、水路形 状を改善することによる冷却効率の向上が挙げられる[1]。 この結晶の評価を以下に示す5点に対して行った。(1)結 晶性の評価:結晶の完全性を、実験ハッチに導入される単 色X線のビーム形状から評価した。図2には、ID gap 12 mm、フロントエンド(FE)スリット開口1×1 mm²、エ ネルギー7.74 keVにおける実験ハッチ内でのビーム形状を 示したものである。同じ図中には垂直位置0.4 mmおよび 水平位置 - 0.2 mmでの断面図を示している。この図から 垂直方向のビームサイズは0.6 mm、水平方向のビームサ イズは2.0 mm (FWHM) であることがわかる。このビー ム形状からわかるように、第一結晶の結晶性には今なお問 題点が残されていると言える。(2)X線強度の安定性:冷 却効率の向上によって、FEスリットを1×1 mm²まで開い ても問題なく利用できるようになった。FEスリットの開 口0.5×0.5 mm²の場合と比較して、第一結晶のロッキン グ・カーブの幅は9%程度広がるものの、約4倍のフラック スが得られている。(3)振動のテスト:X線強度の振動に 関しては冷却水による効果が最も大きいことがわかってお り、これを軽減するための対策が取られた。水配管で利用 しているフレキシブルチューブを二重構造(外側:SUS、 内側:エラストマーチューブ)にすることによって、乱流 による振動を抑えることができ、100 Hz以上の振動がほ とんど無くなった。また、アキュムレータの導入によって チラー冷却水の断続的な水圧変動の影響を抑える試みを行

図2 BL39XUの実験ハッチ内で得られるX線ビームの形状。ID
gap 12 mm、FEスリット開口1×1 mm、エネルギー7.74
keVでの結果。等高線グラフと垂直位置0.4 mmおよび水平
位置 - 0.2 mmにおける断面図を示す。

実験ステーション(共用ビームライン)

ったが、アキュムレータの有無による大きな変化は見られ なかった。入射X線強度変動の測定の結果、強度変動はロ ッキング・カーブのピークで±1.0%、肩(半値)で±3.9% であり、結晶の振動が±0.2 秒と見積もられる。(4)フラ ックス測定:Si PINフォトダイオードを利用してフォトン フラックス測定を行った。蓄積電流値は92 mA、ID gap 14.45 mm、FEスリット開口1×1 mm²、エネルギー10 keVで4.4×10¹³ ph/secが得られた。これは理想的な値と 比較して60%弱であるが、前回の結晶(40%程度)よりは 改善されている。(5)エネルギー分解能測定:分光器第二 結晶に対して、アナライザー結晶Si 333(8~10 keV)、Si 555(12~16 keV)、Si 777(18 keV)を(++)配置に設 置して、エネルギー分解能の測定を行った。8~18 keVに わたってほぼ一定のエネルギー分解能 $\Delta E/E=2\times10^{-4}$ が得 られている。

新型ピンポスト結晶は、冷却効率の面は旧型結晶よりも 明らかに改善された。冷却効率の向上は、必要とする冷却 水の量が少なくて済むため、分光結晶の振動が抑えられ、 X線強度の振動が軽減する。また、FEスリットを開口制 限値の1×1 mm²まで開くことが可能になったため、フラ ックスを必要とする測定では有用である。一方で問題点も 残されており、特にX線ビーム形状の改善が求められる。

2.3. ミラーベント機構の導入と調整

2000年4月にはPtミラーのベント機構が導入され、水平 方向の集光が可能になった。ベント量に対するビームサイ ズ、ビーム発散角およびフラックス密度の測定を行った。 ミラーの視射角θ_Gが異なると、水平方向のビームサイズを 最小にするベント量は変化するため、 θ_{G} =3~7 mradに対 してミラーベント量と水平方向のビームサイズの関係を調 べた。また、ベント量を調節することにより入射X線を平 行化することが可能であるが、Siアナライザー結晶を利用 して、そのロッキング・カーブの幅から平行光を与えるミ ラーベント量を見積もった。表3に代表的なθ_Gに対する平 行光およびミラーから7 m離れた位置で最小ビームサイズ を与えるミラーベント量を示す。 $\theta_G = 7$ mradではミラー のベント量を最大にしても集光できていない。また、ID gap 11.30 mm、FEスリット開口0.5×0.5 mm²、エネルギ -7.11 keV、 θ_G =5 mradの場合、光子フラックス密度は 非集光時の8倍程度に増加する。総フラックスはベント量 によらずほぼ一定である(図3)。

図3 ミラー集光時のベント量と横方向のビームサイズの変化、 およびフラックス密度と総フラックスの関係。ID gap 11.30 mm、FEスリット開口0.5×0.5 mm²、エネルギー7.11 keV、 _G=5 mrad、ミラーから4.5 m地点での結果。

2-4 偏光EXAFS測定のためのID、分光器、移相子の連携 駆動システムの構築

実験ハッチの最上流部に設置されている移相子は、実験 ハッチに導入された水平直線偏光を垂直直線偏光や円偏 光、または楕円偏光に切り替えるために用いられる。良い 偏光度を得るためには、入射X線のエネルギーの増加とと もに移相子も厚くする必要があるため、BL39XUでは厚さ の異なるダイヤモンド単結晶を用意している。垂直直線偏 光または円偏光を利用した偏光依存XAFSに対して、ダイ ヤモンドの厚さと利用できるエネルギー範囲の関係を示し たのが表4である。厚い移相子を利用した方が偏光度の点 では有利であるが、移相子を透過したX線の強度が小さく なるため、図4に示した透過率と対応させながら、実験に 応じた適切な厚さの移相子を選ぶ必要がある。

BL39XUでは、偏光依存EXAFS測定や磁気EXAFS測定 を簡便かつ迅速に行うために、ID、分光器、移相子の連 携駆動を行うためのシステムを構築してきた。本年度は、 移相子のピエゾ調整機構を導入することで、これまで以上 に簡便かつ迅速に調整できるようになった^[2]。以下、こ のシステムの概要を簡潔に記す。

IDの基本波のエネルギーを与えるIDのギャップ値Gは

表3 ミラーの視射角に対する入射 X 線の平行条件と集光条件

Glancing angle (mrad)	3	4	5	6	7
Parallel condition (pulse)	13223	15987	19177	21993	24537
Focusing condition (pulse) *	25807	32284	38061	43161	45000**

* at the 7 m point from the center of the mirror

** pulse limit of the mirror bent (still not focused)

表4 BL39XUのダイヤモンド移相子の厚さと利用できるエネルギー範囲の関係。ピエゾの振り幅の限界と ダイヤモンドのロッキング・カーブの幅から決定したものである。同じ厚さの移相子を利用した場合、 5.76 keV以上のエネルギーでは、220 Laue配置の方が透過強度の面で有利であるため、0.45 mm以上の 厚さの移相子に対しては111 Bragg配置では利用しない。

Thickness of diamond (mm)	Available ener 220 Laue geometry		gy range (keV) 111 Bragg geometry	
	circular	vertical	circular	vertical
0.34	5.3 — 8.7	5.0 — 7.3	5.2 — 10.7	5.0 - 8.4
0.45	5.7 — 9.3	5.0 — 7.8	_	-
0.73	6.4 — 10.5	5.2 - 8.9	-	-
2.7	8.8 — 14.6	7.4 - 12.3	-	-
4.0	9.8 — 16.0	8.2 — 13.6	-	-

図4 ダイヤモンドを移相子として利用した場合の透過率のエ ネルギー依存性。X線がダイヤモンドを通過する有効厚さ を考慮して計算している。

次式によって示される。

$$G = \alpha \ln \left(\frac{1}{E} - 1\right) + \gamma \tag{1}$$

ここで、*E*(keV)はX線のエネルギー、α、β、γはフィ ッティングパラメータである。IDのギャップスキャンの 測定結果から、BL39XUではα=-4.988、β=18.65、γ= 13.72を採用している。BL39XUでは、この式を利用して 分光器のエネルギーを変化させる度にIDのギャップを制 御している。なお、分光器の二結晶の平行調整は第一結晶 ステージに取り付けられているピエゾ作動装置を利用して 行われている。IDギャップと分光器の平行調整に要する 時間は約1.5秒である。

また、移相子を利用して偏光状態を制御する場合には、 Braggの式を変形した次式によって、移相子の角度θ_Bをパ ルスモータでコントロールしている。

$$_{B} = \sin^{-1} \left(\frac{hc}{E} \cdot \frac{\sqrt{h^{2} + k^{2} + l^{2}}}{2a} \right)$$
 (2)

ここで、E(keV)はX線のエネルギー、a()はダイヤ モンドの格子定数である。hc = 12.3984(keV・)、220 Laue配置においては $h^2 + k^2 + l^2 = 8$ であるから、最小二乗 法によるフィッティングの結果からa=3.5653が得られて いる。Bragg反射のピークに完全に合わせるために、移相 子もピエゾ作動装置を利用している。垂直直線偏光や円偏 光の偏光度を最適化するための移相子のオフセット角は、 Nalシンチレーションカウンターを利用した簡易偏光モニ ターによって実験的に求められており、現在は5.4~16 keVの範囲でこのシステムは動作するようになっている。

3.実験ステーション

BL39XUの実験ハッチは、上流から順にスリット、移相 子、磁気吸収・散乱ステーション、分光分析ステーション が1つのハッチ内の光軸上に設置されている。BL39XUで 利用できるステーション機器は、表5に示された通りであ る。以下に、各ステーションの更新状況および今後の予定 について記す。

3.1 磁気散乱・吸収実験ステーション

低温における磁気吸収実験の試料温度の調節による時間 のロスを少なくするためのHe循環型クライオスタットの 試料ホルダーを作製した。これまでは1つの試料しか取り 付けることができなかったが、最大3つまで試料を取り付 けることができるようになった。この新しい試料ホルダー は現在、0.6 T用(磁極間距離45 mm)と2.0 T用(磁極間 距離10 mm)の2種類だけである。表6に各試料ホルダー の最低到達温度とそれに要する時間との関係を示す。

He再凝縮装置付き10 T超伝導磁石(SCM)が2000年4 月に納入された。しかし、5月上旬の立ち上げ時にクエン チを起こし、現在、修理中である。この10 T-SCMは2001 年6月に修復、再納入の予定である。

検出器として、マルチグリッド(17グリッド)型Lytle 検出機とSiフォトダイオード(Au/Si Schottky接合型)を 新たに導入した。マルチグリッド型Lytle検出器は、従来 のような蛍光X線収量を稼ぐだけでなく、円偏光変調 XMCD^[3,4]やエネルギー変調XAFS^[5]を透過法だけで なく蛍光法でも行うことができるように新たに開発された ものである。応答速度は0.1 msecと従来のLytle検出器よ 表5 BL39XUで利用できるステーション機器の一覧

(1) F	Facilities in Experimental Station
(1) F	or magnetic scattering / absorption
•	Diffractometer (3-axes diffractometer and 4-axes goniometer)
•	Electromagnet and power supply
	(Hmax = 0.61, 1.09, 1.98 T with 45, 20, 10 mm gap, respectively)
•	Superconducting magnet with variable temperature insert
	(Hmax = 10 T, T = 1.7 300 K)
•	Cryostat and vacuum pump
	Cryostat A ($T = 15$ 300 K, fitted with the electrmagnet)
	Cryostat B ($T = 15$ 300 K, fitted with the 4-axes goniometer)
•	Analyzer crystals
	(channel-cut Si 333 and 331, Si 111, LiF 220, Johan-type Ge 111 and 220 ($2R = 500 \text{ mm}$), graphite)
•	Ionization chambers and their electronics
٠	NaI scintillation counter and its electronics
٠	Si (Li) detector and its electronics
•	Si PIN photodiode, Si/Au photodiode
٠	Fluorescence Ionization chamber (Lytle detector) with 17 grid
2) F	or microscopic analysis
٠	X-ray fluorescence micro-spectrometer
	vacuum chamber
	pin-hole device
	Kirkpatrick and Baez mirror
	precision sample stage
	position-sensitive proportional counter
	X-ray CCD with wave-dispersive crystal analyzer
	Si (Li) detector and its electronics
٠	Optical CCD camera monitor system
(3) F	or ultra-trace element analysis
٠	Grazing-incidence reflectometer
	vacuum chamber
	goniometer stage of 0.005 arcsec/step
	glove box
	ionization chamber
	Si (Li) detector and its electronics
4) O	thers
٠	Four jaws slit
٠	Replaceable attenuator
٠	Light chopper (chopping frequency = $5 20,000 \text{ Hz}$)
٠	Vacuum and He pipes for X-ray path
٠	Oil-free scroll pump
•	Digital oscilloscope
•	Multi-channel analyzer
•	Digital multimeter
•	Pen recorder
•	Monitor camera system
•	Clean bench
•	Optical microscope
•	Dewar vessel for LN ₂
•	Magnetometer
•	Desiccator and vacuum pump
•	Ultrasonic cleaner
•	MO drive and CD-R writer for data storage

|--|

	0.6 T-1 sample	0.6 T-3 samples	2.0 T-1 sample	2.0 T-3 samples
Lowest temperature (K)	19.5	15.5	23.0	36.5
Cooling time (min)	123	104	134	134

りも1桁以上速くなっている。一方でAu/Siフォトダイオ ードはPINフォトダイオードよりも検出窓が大きく (φ32mm)、これも蛍光X線の収量を稼ぐことができる。 このフォトダイオードの特徴は、小型軽量で高電圧および ガスが不要であるため、大型装置が並ぶ中での狭い空間で 利用できることである。

2001年8月にはステーションの高度化として、磁気散乱用 回折計の主軸の改造が行われる予定である。これにより試 料の並進のための2軸とあおり1軸が追加される。 3.2 分光分析実験ステーション

蛍光X線ホログラフィー装置が導入され、円筒状のLiF 結晶とAPDとの組み合わせによって、蛍光X線の高カウン トレート測定を実現している^[6]。連続スキャンとの組み 合わせによって、2.5時間での1ホログラム測定が可能とな る。位置分解能は0.1 を実現しており、7 離れた原子も はっきりと再生されている。今後、微量元素のホログラム 測定を目指しており、そのための新しい検出器の導入や分 光結晶の改良が進められている。

簡易的な2次元ビームモニターとしてデジタルCCD+プ ラスチックシンチレータを導入した。これによって、ビー ムライン分光器の調整や装置の位置決めが容易になった。 また、蛍光分析用の真空チェンバー外でKirkpatrick and Baez(KB)ミラーのテストが開始され、現在2×4 µm²の マイクロビームが実現されている^[7]。このKBミラーを利 用した応用研究がはじまりつつあり、蛍光X線分析として は薄膜試料で1 fg以下の検出限界を実現、また、マイクロ XAFS法を利用した薄膜の状態別のイメージングが5 µm 以下の空間分解能で実現している。今後は、1 µm以下の マイクロビームの実現を目指し、そのためのスタディも始 まっている。

さらに、高分解能蛍光X線分光を実現するために、波長 分散型分光装置としてX線CCDカメラ(空間分解能20μm) も導入された。エネルギー分解能を求める実験においては、 X線CCDカメラは位置敏感型比例計数管PSPC(空間分解 能200μm)よりも有利である。現在はこのCCDカメラを 利用する系について最適化が進められている。

(河村直己、鈴木基寛)

参考文献

- [1] H. Yamazaki, M. Yabashi, K. Tamasaku, Y. Yoneda, S. Goto, T. Mochizuki and T. Ishikawa : Nuclear Inst. Methods A467-468 (2001) 643.
- [2] M. Suzuki, N. Kawamura and T. Ishikawa : J. Synchrotron Rad. 8 (2001) 357.
- [3] M. Suzuki, N. Kawamura, M. Mizumaki, A. Urata, H. Maruyama, S. Goto and T. Ishikawa : Jpn. J. Appl. Phys. 37 (1998) L1488.
- [4] M. Suzuki, N. Kawamura, M. Mizumaki, A. Urata, H. Maruyama, S. Goto and T. Ishikawa : J. Synchrotron Rad. 6 (1999) 190.
- [5] M. Suzuki, N. Kawamura and T. Ishikawa : Nuclear Inst. Methods A467-468 (2001) 1568.
- [6] K. Hayashi, M. Miyake, T. Tobioka, Y. Awakura, M. Suzuki and S. Hayakawa : Nuclear Inst. Methods A467-468 (2001) 1241.
- [7] S. Hayakawa, N. Ikuta, M. Suzuki, M. Wakatsuki and T. Hirokawa : J. Synchrotron Rad. 8 (2001) 328.