課題番号:2009B1712

利用ビームライン:BL40XU

課題名:ポルフィリン保護配位子を用いた金属ナノ粒子の生成過程の in-situ XAFS による観察

京都大学大学院工学研究科 博士後期課程3回生 大山順也

1. 背景と目的

金ナノ粒子は、溶液中で保護剤存在下、金イオンを還元する方法で容易に調製すること ができる.特に,数ナノメートルの小さな金ナノ粒子を調製する方法として,ドデカンチ オール(DT)を保護剤として用い,塩化金酸を NaBH4 によって還元する方法がよく知ら れている. この方法を用いた金ナノ粒子の生成機構は, LaMer 機構で説明されている. LaMer 機構は、1950年に、硫黄ゾルの生成機構に関する研究で提案された. 過飽和となっ た硫黄の単量体から、一挙に核が生成し、その後、核上で硫黄の単量体が消費され、硫黄 粒子が成長するという機構である. つまり, 金ナノ粒子の生成機構に, LaMer 機構が適用 されているだけで、実際の機構は明らかになっていない.これは、実際の調製系である溶 液中での粒子の生成過程を観察することが困難なためである.これまでの報告で、粒子の 形状や粒子径を評価するために, TEM や SEM などの電子顕微鏡が用いられており, 粒子 の価数や構造を知るためには、XPS が用いられている.しかし、通常、これらの観察法は、 真空チャンバー内に入れる必要があるため,実際の調製系で生成機構をその場で観察する ことは不可能である.これに対して, XAFS 測定は試料の形状を問わない測定法としてよく 知られており, 測定する条件も様々に変化させることができる.さらに, XAFS スペクトル を解析することで、金属イオンの化学状態および配位環境の情報を得ることができる.そ こで,本研究では,金イオンの NaBH₄還元による金ナノ粒子の生成過程を,XAFS 分光法 を用いて観察した.本研究で検討した,金ナノ粒子の生成反応は非常に速いために,高い 時間分解能を持つ分光法が必要である. そこで, BL40XU にて, ミリ秒オーダーの時間分 解能を持つ QXAFS 分光法を用いて金ナノ粒子の生成反応をその場観察した.

金ナノ粒子の保護剤としては、一般的な保護剤である DT,および、我々が合成した 4 つの硫黄原子を同一方向に持つポルフィリンを用いた.これまでの BL40XU での測定 から得られた XANES スペクトルの解析から、本ポルフィリン保護剤が、小さな Au ク ラスターの強く安定化し、粒子成長の強い抑制が示唆されている.(課題番号 2009A1663 萌芽的研究課題研究報告書参照)ところが、スペクトルの質が低く、小さな Au クラスタ ーの構造に関する知見は得られていなかった.そこで、本課題では、金ナノ粒子の調製条 件を変化させ、より質の高いスペクトルを得ることを考えた.これにより、金ナノ粒子 の生成過程で生じる核の構造を検討することができ、粒子の生成メカニズムについても より詳細に検討することができると考えられる.ここでは、一般的な保護剤である DT を用いた場合の金ナノ粒子生成過程の in situ XAFS 分光法による観察について述べる.

2. 実験

0.1 Mの HAuCl₄ 水溶液 10 mL に、トルエン 10 mL, HAuCl₄に対して 2 当量のテトラ オクチルアンモニウムブロミドを加え, 攪拌し, HAuCl₄をトルエン相に移した.トルエン 相を抽出し, 0.1 Mの HAuCl₄トルエン溶液とした.テフロン製セルに 0.1 Mの HAuCl₄ トルエン溶液を 0.2 mL, 0.1 Mの DT トルエン溶液を 0.2 mL, トルエン 1.2 mL を加えた. HAuCl₄に対する DT の比率 (DT/Au) は 1 となる.この溶液を室温で 5 分間攪拌した後, USP-203-A 低温セル室 (UNISOKU Co., Ltd.) で-10℃に冷却した.この溶液に, 0.2 Mの NaBH₄ DMF 溶液を 0.4 mL で金イオンを還元した. Au L₃殻 XAFS 測定は, SPring-8 BL40XU にて行った. 1 スペクトル当たり 100 ms で測定した. XAFS 測定は NaBH₄溶 液の導入と同期させた. NaBH₄溶液導入前に 10 スペクトル測定 (1 s) し、導入後に 1800 スペクトル (180 s) を得た.一連の XAFS スペクトルのエネルギーは、同時に測定した Au foil の吸収端を 11919 eV として補正した.

3. 結果と考察

Figure 1 に, DT/Au = 1 の溶液へ NaBH₄を導入後 180 s に渡る Au L₃ 殻 XANES スペク トルを示す.また、参照として HAuCl₄トルエン溶液および Au foil のスペクトルを示して いる.DT/Au = 1 の溶液の還元前のスペクトルに見られる white line は、HAuCl₄トルエン 溶液と比較して、小さいことが分かる.これは、DT によって Au³⁺の一部が Au⁺に還元さ れたことを示す.DT による Au³⁺の還元を検討するために、さまざまな DT/Au 比の還元前 の XANES スペクトルを測定した.Figure 2 に示すように、DT/Au 比が高くなるにつれて white line が小さくなり、DT/Au = 2 以上では、ほとんど変化がないことが分かった.これ は、DT/Au = 2 以上では Au⁺であることを示す.つまり、2 分子の DT が 1 分子の Au³⁺を Au⁺に還元することが示された.Figure 1 に示す DT/Au = 1 の還元前の溶液では、Au³⁺と Au⁺が等量ずつ混在していることになる.

還元剤を一気に導入して 0.5 s 後には, 還元前に見られる white line は消失した. これは, 全ての金イオンが 0 価もしくは 1 価に還元されたことを示す. その後, 11928 eV 付近に小 さなピークが現れ, 4.6 sec 後にピークが最も大きくなった. このような小さなピークは, 小さな金クラスターである Au₁₁(PPh₃)₈Cl₃のスペクトルにも現れている. 4.6 s 後には,小 さな金クラスターが生成していると考えられる.

Figure 2. XANES spectra of toluene solution for a series of DT/Au ratios. DT/Au ratios are (a) 0, (b) 0.1, (c) 0.4, (d) 1, (e) 2, (f) 4, and (g) 16.

Figure 1. Series of Au L₃-edge XANES spectra during AuNP formation together with those of HAuCl₄, Au foil, and Au₁₁(PPh₃)₈Cl₃ as references. The XANES spectra during the formation of AuNPs in the presence of the equimolar of DT to HAuCl₄ from 0 s to 178.5 s (red and blue). The spectra vary from the top to the bottom region with an increase in time. The spectrum at 4.6 s is colored blue. References (black): HAuCl₄ (dotted line), Au foil (dashed

小さな金クラスターの構造を EXAFS スペクトルから検討した. Figure 3 に 4.6 s 後の EXAFS スペクトルを示す. 参照スペクトルとして, Au foil および還元前の DT/Au = 1 の 溶液のスペクトルを示している. 4.6 s 後のスペクトルを見ると, k=11 - 13Å⁻¹では振動 がほとんど見られず, k=7.5 - 11, 13 - 15Å⁻¹では振動が見られる. 一方, k=11 - 13Å⁻¹では, Au foil と還元前の DT/Au = 1 の溶液のスペクトルが逆位相になっており, k=7.5 - 11, 13 - 15Å⁻¹では位相が合っている. これらより, 4.6 s 後のスペクトルは, Au-Au 間と Au-X (X = Cl⁻, Br⁻, or RS⁻(R⁻: dodecyl group)) 間の散乱の足し合わせであると考えられる.

Figure 2(b)は、Au foil のスペクトルに 0.25 倍したスペクトルと還元前の DT/Au = 1 の溶 液のスペクトルに 0.125 倍したスペクトルを線形結合したスペクトルである. この線形結 合したスペクトルに 0.125 倍したスペクトルを線形結合したスペクトルである. この線形結 合したスペクトルは、4.6 s 後のスペクトルの k=11 - 13Å⁻¹の範囲の振動を良く再現して おり、スペクトル全体を通して、位相および振幅もおおよそ一致している. この線形結合 したスペクトルから、EXAFS スペクトルの振幅が配位数だけに依存するとして 4.6 s 後の 金クラスターの Au-Au 結合の配位数を見積もると、Au-Au 結合の配位数は 3 となり、4.6 s 後には、Au₄クラスターが生成していることが示唆された. このように、還元剤導入によっ て金イオンが還元され、4.6 s 後に Au₄のような小さなクラスターが生成することが明らか になった. この小さなクラスターが、金ナノ粒子生成過程における核であろう. また、XAFS スペクトルが系中全体の情報を与えることを考慮すると、系中の全ての Au 原子が小さな金 クラスターを構成していると考えられる. 筆者の知る限り、粒子生成過程で生成する核を 捉えられたのは、本研究が初めてである. これは、BL40XU での高い時間分解能を有する QXAFS 分光法による観察で初めて達成できた結果である.

Figure 1 の 4.6 s 後以降の変化に着目する. 4.6 s 後に 11928 eV 付近に見られたピークは 小さくなっていき, Au foil のスペクトルに近づいていく様子が見られる. それぞれの XANES スペクトルは, 4.6 s 後の金クラスターと Au foil の XANES スペクトルの線形結合 で表わし, それぞれのスペクトルの組成を求めることができた. スペクトルの組成の経時 変化を Figure 4 に示す. 時間が経つに伴い,金クラスターの組成が減少し, Au foil の組成 は増加している. ここで, 4.6 s 後の小さな金クラスターは,配位不飽和な Au 原子(表面 原子)のみで構成されており, Au foil が,配位飽和な Au 原子(内部原子)で構成されて いることを考えると,時間に伴う組成の変化は,配位不飽和な Au 原子の組成が減少し,配 位飽和な Au 原子の組成が増加することを示している. この変化は,粒子成長を意味する. また,それぞれの組成が,0%もしくは 100%に到達していないことは,最終的に金ナノ粒 子が生成することと一致する. さらに,FEFF 計算から,金ナノ粒子の表面と内部の原子の 吸収スペクトルをシミュレーションした結果,表面のスペクトルは,4.6 s 後のスペクトル, 内部のスペクトルは, Au foil に似たスペクトルを示した. これらより,上記の XANES ス ペクトルの解析が妥当であり,得られたスペクトルの組成の経時変化は,粒子成長を捉え たものであると結論した.

以上の結果から、金ナノ粒子の生成機構について考察した.金イオンは、還元剤によっ て直ちに還元され、4.6 s後には、系中の全ての金原子が小さな金クラスターを形成する. その後、粒子が成長するが、これは、金クラスター同士の凝集によって進行すると考えられる.

4

Figure 3. EXAFS spectrum of Au nuclei observed during AuNPs formation and estimated structure of nuclei. (a) EXAFS spectrum of Au nuclei observed at 4.6 s after the addition of NaBH₄ to the HAuCl₄ solution. (b) The simulated spectrum by linear combination of the reference spectra of (c) 12.5% of the solution of DT/Au = 1 before reduction (dotted line) and (d) 25% of the Au foil (dashed line). The 7.5–11 and 13–15 Å⁻¹ kranges where the oscillations of (c) and (d) are in phase are in light blue. The inset is the estimated structure of Au nuclei from the linear combination, an Au₄ cluster with fcc crystal system.

Figure 4. Time course of the fractions of the surface and inner atoms of AuNPs. The fraction of the XANES spectrum of Au nuclei observed at 4.6 s during AuNPs formation, representing that of surface of AuNPs (red circle). The fraction of Au foil, representing that of the inner (blue square). The fractions were evaluated by least-squares fitting of the series of XANES spectra with linear combination of those of the Au nuclei and Au foil. The resulting R factor (green triangle).