2009B 期 萌芽的研究支援課題研究報告書

細胞亚日	2009B1690		
課題 課題名	時間分解 in-situ XAFS 法を用いた水性ガスシフト反応用銅系触媒の起動		
	停止処理による触媒劣化および劣化抑制メカニズムの解明		
課題責任者	北陸先端科学技術大学院大学		
	マテリアルサイエンス研究科博士後期課程		
	西村 俊		
利用ビーム	BL-01B1	利用期間	2010/1/25 10:00 - 2010/1/28 10:00
ライン			9シフト
共同実験者	京都大学大学院工学研究科		
	古川森也、宍戸哲也、田中庸裕		
	北陸先端科学技術大学院大学マテリアルサイエンス研究科		
	岩谷賢、大原三佳、小松洋介、高垣敦、海老谷幸喜		

1. 目的および背景

新しい小規模電源の一つとして、燃料電池を用いたコジェネレーションシステムの開 発が進められている。このシステムは、電気の供給と発電時に生じる排熱を利用するこ とでより高効率なエネルギー変換(理論効率 83%)が可能であり、更に有害な排気ガ ス等が出ないクリーンな発電システムであることから、次世代のエネルギー供給源とし て期待されている。燃料となる水素は、現在のインフラを利用した"都市ガス等の炭化 水素類を改質した水素(改質水素)"を主に利用することが想定されている。この改質 水素を用いる場合、改質時に副生する一酸化炭素(CO)が燃料電池の出力低下を引き 起こすため、炭化水素を改質してから燃料電池に供給するまでの間に CO を 20ppm 程 度まで低減する必要がある。本研究の対象である CO シフト反応は、CO 低減と同時に 水素を生成することから、優れた CO 低減方法として利用されている。

本システムの普及に向けてはいくつもの課題があるが、"起動停止 (DSS; Daily Start-up and Shut-down) 運転による使用触媒の活性低下"の克服は急務である。例えば、従来の 定置運転では本反応に安定的に活性を示す Cu 触媒でも、同じ反応時間で反応の合間に 起動停止処理を施したスキームで反応を行うと*起動停止の繰り返しに伴って、活性が著* しく低下することが分かる(図1)。この活性低下の要因としては、活性種のシンタリン グ、凝集した水により形成された-OH 基による影響、炭酸塩の生成による阻害、水や酸素 による酸化などが提案されているが、**触媒の劣化が進行する機構やその抑制に対する有効** な方策については未だ明確な結論には至っていない。

我々は、起動停止運転時に残存する 水蒸気の影響について詳しく検討するために、水蒸気雰囲気下での起動停止(水蒸気処理) を行った触媒の活性・耐久性評価を進めている。その結果、Cu/Al2O3 触媒について、調製 法の違いにより水蒸気処理に対する耐久性が異なること、更には工業用の Cu/ZnO/Al2O3 触媒よりも水蒸気処理に対する耐久性が高い Cu/Al₂O₃触媒の開発に成功した^[1]。また、こ の水蒸気処理に対して耐久性が高い Cu/Al₂O₃ 触媒は、反応の間に起動停止処理を施した スキームで反応を行っても著しく活性が低下することがなく、むしろ起動停止により初 期活性よりも高い活性を示した(図2)。この高活性化・高耐久性の要因の一つには、 起動停止処理時に残存する水蒸気によって触媒中の Al 種が状構造のベーマイト (AlOOH)に変化し、活性種のCu種を急激な雰囲気変動から保護する役割を担ってい るためであると考えている^[2]。

そこで本研究では、起動停止処理に対する耐久性が大きく異なる共沈法(CP-)と含浸法 (IMP-)で調製した Cu/Al₂O₃ 触媒について、*in-situ* XAFS 測定法による起動停止運転下 での触媒挙動の観察を行い、触媒活性低下および劣化抑制メカニズムの解明を試みた。

図 2 CP-Cu/Al₂O₃ 触媒を用いた CO シフト反応活性変化(A)経時反応, (B)起動停止反応

2. 実験·解析方法

測定は、SPring-8 BL01B1 のガス供給・排気システムを用いて行った。*In-situ* 測定用 のセルには、㈱京和真空製用のガス Flow 型セル (ASPF-20-03) を使用し、イオンチェ ンバーを用いた透過法により、Cu-K edge (8.98 keV)の XAFS 測定を行った。スキャン速 度は 60 s、スキャン範囲は 8723-10362 eV を用いた。標準試料には、Cu foil (Cu⁰)、Cu₂O (Cu⁺)、CuO (Cu²⁺) を用い、それぞれ室温にてスペクトルを測定した。触媒中の Cu 種の酸化還元挙動については、得られてスペクトルと室温で測定した標準スペクトルを 足し合わせたスペクトル (α (Cu⁰)+ β (Cu⁺)+ γ (Cu²⁺))を比較し、その係数 (α , β , γ) から見積もった。

In-situ 測定には水蒸気処理の回数が異なる2種類の温度プロファイルを用いた(図3)。これまでの検討から、水蒸気処理を増やすことにより、起動停止雰囲気中での触媒の酸化が促進され、より激しい酸化還元雰囲気変動を与えられることが分かっており(2010A1662, SPring-8 萌芽研究課題 BL01B1)、連続的な起動停止を繰り返した際の触媒挙動の変化(図3A)、さらにはより酸化還元雰囲気変動をさらに厳しくした際の触媒挙動の変化(図3B)の比較検討を試みた。

図 3 In-situ 測定実験における温度スキーム (A)水蒸気処理1回、(B)水蒸気処理2回

3. 結果、考察

先ず、図3Aの温度プロファイルを用いた際の CP 触媒および IMP 触媒の Cu 種の酸 化還元挙動と Cu-Cu 配位数変化を図4に示す。いずれの触媒でも、反応ガス中では Cu⁰ が多く、反応活性に Cu⁰が重要な役割を示していることが示唆された。また、水蒸気処 理中では Cu⁰から Cu⁺への酸化が進行し、再度反応ガスを導入すると元の組成と同様の 組成まで急激な還元を経て戻ることが分かった。また調製法の違いにより、水蒸気処理 中に酸化される Cu 種の量が大きく異なり、CP 触媒の方が IMP 触媒よりもその割合が 大きいことが分かった。しかしながら、いずれの触媒においても、起動停止処理を繰り 返すことによる酸化還元挙動の変化および配位数の変化はほとんど見られなかった。 *In-situ* 測定用のスキームは、実際の反応装置よりも SV がかなり速いため(約10 倍)、

実際の触媒挙動との比較検討を行う上では、*in-situ* セルを用いる場合ではより激しい酸 化還元雰囲気変動を生じさせて観察し、検討を行う必要があるのではないかと考えた。 そこで、水蒸気処理の回数を増やし、より激しい酸化還元雰囲気変動が生じる図3B の温度プロファイルにて測定を行った。使用した触媒は、予め実験室で水蒸気処理を 50 回繰り返し、高活性・高耐久性を示す CP 触媒(CP-D50 触媒)と、水蒸気処理を 10 回行い著しく活性が低下した IMP 触媒(IMP-D10 触媒)を用いた。酸化還元挙動と配 位数変化を図5に示す。まず、CP-D50 触媒の挙動を見てみると、起動停止を繰り返し た際にも Cu 種の性質は大きく変化しないことが分かった。一方、IMP-D10 の挙動を見 てみると、起動停止処理を繰り返すとその量が減少することが分かった。この結果から、 耐久性が高い CP 触媒に含まれる Cu 種は、起動停止運転に伴う酸化還元雰囲気変動に おいても、安定な Cu 種であり、耐久性が低い IMP 触媒中の Cu 種は、起動停止運転に 伴う酸化還元雰囲気変動の影響を受けやすい Cu 種であることを示しているのではない かと考えている。この場合も、配位数の変化に大きな違いは認められないことから、 Cu 触媒の劣化の原因として、Cu 種の凝集だけではなく活性表面の性質の変化も関与し ているのではないかと予想された。

<今後の展望>

今回の検討では、より実際の起動停止運転条件に近い温度スキームを用い、水蒸気処 理と反応を繰り返した酸化還元雰囲気変動下での触媒挙動の追跡手法を確立すること ができた。一方で、以前の検討と比較して、水蒸気処理による酸化の程度が減少したこ と、予め水蒸気処理を施した触媒の酸化還元挙動が大きく異なること、などの相違点が あった。In-situ セルを用いた測定方法や測定スキーム、予め水蒸気処理を施した触媒の 物性・活性評価を再度検討し、起動停止運転に伴う触媒の活性低下および劣化抑制機構 の解明を進めていきたいと考えている。

4. 参考文献

[1] Tetsuya SHISHIDO, Shun NISHIMURA, Yusuke YOSHINAGA, Kohki EBITANI, Kentaro TERAMURA, and Tsunehiro TANAKA,

"High Sustainability of Cu-Al-Ox Catalysts against Daily Start-up and Shut-down (DSS)-like Operation in the Water Gas Shift Reaction" *Catalysis Communications*, **2009**, *10*, 1057-1061.

[2] Shun NISHIMURA, Tetsuya SHISHIDO, Kohki EBITANI, Kentaro TERAMURA, and Tsunehiro TANAKA,

"Novel Catalytic Behavior of Cu/Al₂O₃ Catalyst against Daily Start-up and Shut-down (DSS)-like Operation in the Water Gas Shift Reaction" *Applied Catalysis A: General*, in press.

5. 口頭発表

<u>西村俊</u>、後藤貴史、成行あかね、秋山一矢、宍戸哲也、田中庸裕、海老谷幸喜 "In-situ XAFS 測定法を用いた水素製造用触媒の起動停止運転下における触媒挙動の観 察",第40回石油・石油化学討論会,2D01,2010年11月26日(予定).