課題番号 2010A1623

課題名 アルミナ上に担持されたニオブおよびタンタル酸化物の局所構造解明

ビームライン BL01B1

責任実験者 0021686 北野 友之 (京都大学)

目的及び背景

酸触媒反応は工業化学プロセスにおいて主要な反応の一つであり、よりよい反応プロセスを模 索することは重要な課題である.多くの反応プロセスにおいて、硫酸などの液体の酸触媒がよく 用いられているが、環境負荷の観点などから固体酸触媒を用いたプロセスへの転換が強く望まれ ている.

含水ニオブ酸は強酸性,耐水性などのユニークな酸触媒特性を示す固体酸触媒の一つである ¹. しかし,773 K で焼成を行うと酸性質を消失することが報告されており,耐熱性には乏しい ². 一方,これをアルミナ上に担持すると焼成温度 1100 K 以上においても Brønsted 酸点が維持さ れることが見出されており,非常に安定な固体酸触媒として機能することが期待される^{3.4}. 担 持系遷移金属固体酸触媒において高温で焼成することで酸性質,特に Brønsted 酸性が発現した という報告例はほとんどない.含水タンタル酸は含水ニオブ酸と同様の酸触媒機能を持つことが 報告されており,高温で焼成したアルミナ担持タンタル酸化物もブレンステッド酸性を示すこと が期待される⁵.

このことから焼成温度, 担持量を変化させたアルミナ担持タンタル酸化物についてその酸性質 と構造の変化について検討を行った.

実験・解析方法

アルミナ担持タンタル酸化物は含浸法にて調製を行った.タンタルエトキシドのエタノール溶液にアルミナ担体(JRC-ALO-8)を加え,加熱,攪拌を行った.一晩乾燥させたのち,様々な温度で焼成を行い,触媒を得た.

調製した触媒の酸触媒機能の検討のためにアニソールとベンジルアルコールとの Friedel-Crafts アルキル化反応, ルチジン吸着 FT-IR 測定を行った. また, 触媒構造の検討のため に XRD パターン, Raman スペクトル, XPS, Ta L₁-edge XAFS, Ta L₃-edge XAFS の解析を行っ た. Ta L₃-edge XAFS, Ta L₃-edge XAFS の測定は試料をペレット状にして透過法にて測定を行っ た. 解析は REX2000 Ver.2.5.9 (Rigaku)を用いて行った.

結果及び考察

焼成温度を 1273 K に固定して担持量を変化させたアルミナ担持タンタル酸化物のアルキル化

Fig. 1 Yield of benzyl anisole over Ta_2O_5/Al_2O_3 calcined at 1273 K with various loadings.

Fig. 2 Yield of benzyl anisole over 33 wt% Ta_2O_5/Al_2O_3 calcined at various temperatures.

反応結果を Fig.1 に示す.アルミナは全く活性を示さず,担持量の増加に伴って活性は向上し, 担持量 33 wt%において最高活性を示した. 33 wt%以上では活性は大きく減少し,T相タンタル 酸化物は活性を示さなかった.アニソールとベンジルアルコールとの Friedel-Crafts アルキル化 反応は Brønsted 酸点上で進行し,ベンジルアニソールを生成することが報告されている⁶.この ことから高温で焼成したアルミナ上に担持されたタンタル酸化物上に Brønsted 酸点が発現した ことが示唆された.

また,担持量を 33 wt%に固定し,焼成温度を変化させたアルミナ担持タンタル酸化物の Friedel-Crafts アルキル化反応結果を Fig.2 に示す.焼成温度の増加に伴って活性は向上し,1223 K 近傍において急激に活性が向上し,それ以上の焼成温度では活性は急激に低下した.このことか ら焼成温度 1223 K 近傍において Brønsted 酸点が多く発現したことが示唆される.このことから アルミナ担持タンタル酸化物においてもアルミナ担持ニオブ酸化物の場合同様,高温焼成により 新たに Brønsted 酸点が発現し,焼成温度 1223 K において最も多くの Brønsted 酸点が発現したと 考えられる.

以上の結果からアルミナ上にタンタル酸化物を担持することで Brønsted 酸性が発現し, 担持 量 33 wt%, 焼成温度 1223 K において最も多くの Brønsted 酸点が発現することが示唆された. 実際にルチジン吸着 FT-IR 測定によって調製した触媒の Brønsted 酸性の評価を行ったところ, 高温 焼成を行ったアルミナ担持タンタル酸化物に Brønsted 酸点が発現していることが確認された.

これらの結果より,酸性質は焼成温度,担持量に強く依存することが分かった.更にこのよう な酸性質の変化の要因を焼成温度,担持量による触媒の構造の変化を追うことで検討を行った.

まず, 調製した触媒の構造について XRD パターン, Raman スペクトルにより検討を行った. 担持量を 33 wt%に固定して焼成温度を変化させたところ, 焼成温度 1223 K まではタンタル酸化 物は結晶構造を有しておらず, アモルファスで存在しており, 1273 K 以上では T 相 Ta₂O₅, AlTaO₄ が形成されることが分かった. T 相 Ta₂O₅, AlTaO₄ は Brønsted 酸点を持たなかったことから焼成

Fig. 5 Ta L_3 -edge EXAFS of reference samples and 33 wt% Ta₂O₅/Al₂O₃ calcined at various temperatures. (a) 773 K (b) 973 K (c) 1173 K (d) 1273 K (e) 1323 K (f) 1373 K (g) 1423 K (h) AlTaO₄

 $\begin{array}{l} \label{eq:Fig. 6} Fig. 6 \ Ta \ L_3-edge \ EXAFS \ of \ reference \ samples \\ and \ Ta_2O_5/Al_2O_3 \ calcined \ at \ 1273 \ K \\ with \ various \ loadings. \\ (\ a \) \ 10 \ wt\% \ (\ b \) \ 20 \ wt\% \ (\ c \) \ 30 \ wt\% \\ (\ d \) \ 33 \ wt\% \ (\ e \) \ 40 \ wt\% \ (\ f \) \ T-phase \ Ta_2O_5 \\ \end{array}$

温度 1223 K 以上における活性の低下の要因はこれらの酸化物の形成によるものであると考えられる. 焼成温度を 1273 K に固定し, 担持量を変化させたところ, 担持量 33 wt%から T 相 Ta₂O₅ が形成され, 33 wt%以上における活性の低下は T 相 Ta₂O₅の形成によるものであると考えられる.

触媒表面上における Ta と Al の表面組成比について検討を行うために XPS 測定を行った. その結果,担持量 33 wt%以上では凝集状態が変化することがわかった. 担持量ごとの比表面積の変化からタンタル酸化物がアルミナ上をモノレイヤーで覆う担持量を算出したところ, 33 wt% となることからタンタル酸化物はアルミナ上でモノレイヤーを形成し, 33 wt%においてアルミナ上を覆うと考えられる.

触媒上の Ta の局所構造の検討を行うために Ta L₁-edge XAFS, Ta L₃-edge XAFS の解析を行った. 担持量を 33 wt%に固定し, 焼成温度を変化させたアルミナ担持タンタル酸化物及び参照 試料の Ta L₁-edge XANES スペクトルを Fig.3 に示す.タンタルの配位環境の検討のために 11680 eV 近傍のプレエッジピークの解析を行った. このプレエッジピークはタンタル周囲の対称性に 敏感であり,対称性が低いほど強度が強くなることが報告されている⁷.タンタルが正四面体の 四配位構造をもつ YTaO₄は高い強度を示し,正八面体の六配位構造をもつ Sr₂GaTaO₆はプレエッ ジを持たないことが分かる. プレエッジピークの面積を算出し,検討を行った結果を Fig.4 に示 す. 焼成温度 1373 K まではその面積は変化せず,含水タンタル酸のものと同程度であったが, 1423 K において面積は増加することがわかった. この結果は焼成温度 1373 K まではその配位環 境は含水タンタル酸と類似した,歪んだ六配位構造となっており,1423 K になると AITaO₄が混 在することによって歪んだ四配位構造が混じるようになることを示していると考えられる. Fig.5 に担持量を 33 wt%に固定し焼成温度を変化させた触媒と参照試料の L₃-edge EXAFS 振動を

示す. 焼成温度 1273 K までは重金属による振動が強く表れる高波数領域における振動はほとん どなく、それ以上の担持量では高波数領域における振動の強度が増加し、全領域における振動様 式がAITaO4に類似してきていることから焼成温度1273Kまではタンタル酸化物は定まった構造 を取っておらず、それ以上の焼成温度では AITaO4の結晶が混在してゆくものと考えられる. ま た、焼成温度を 1273 K に固定し、担持量を変化させた試料と参照試料の L₃-edge EXAFS 振動を Fig.6 に示す. 担持量の増加に伴って高波数領域における振動の強度は強くなり, 担持量 40 wt% ではT相タンタル酸化物の振動様式に類似した EXAFS 振動となることがわかった.この結果は 担持量の増加に伴ってタンタル酸化物が定まった構造を取り始めていることを示し、担持量 40 wt%ではほとんどのタンタル酸化物が T 相 Ta₂O₅となっていると考えられる. Fig.7 に担持量を 33 wt%に固定し焼成温度を変化させた触媒と参照試料のL3-edge EXAFS 振動のフーリエ変換ス ペクトルを示す. 焼成温度 1273 K までは 3.7 Å近傍の第二配位圏に存在する Ta 由来と考えられ るピークの強度が増加し、一方、1323 K 以上ではそれまでのスペクトルからは一転して AlTaO₄ に近いスペクトルが得られた. このことは初めはアモルファスであるタンタル酸化物が焼成温度 の増加とともに T相 Ta2O5と類似した構造が形成されてゆき, 1323 K以上では構造が大きく変 化して AlTaO₄に近い構造を取り始めることを示している. Fig.8 に焼成温度を 1273 K に固定し, 担持量を変化させた触媒と参照試料のL₃-edge EXAFS 振動のフーリエ変換スペクトルを示す. 担持量の増加とともに第二配位圏に存在する Ta 由来と考えられるピークの強度が増加し, T 相 Ta₂O₅と類似した構造が徐々に形成されていく様子がうかがえる.

Fig. 7 Fourier transforms of Ta L_3 -edge EXAFS of reference samples and 33 wt% Ta₂O₅/Al₂O₃ calcined at various temperatures. (a) Ta₂O₅•nH₂O (b) 773 K (c) 973 K (d) 1173 K (e) 1273 K (f) 1323 K (g) 1373 K (h) 1423 K (i) T-phase Ta₂O₅ (j) AlTaO₄

Fig. 8 Fourier transforms of Ta L_3 -edge EXAFS of reference samples and Ta₂O₅/Al₂O₃ calcined at 1273 K with various loadings. (a) Ta₂O₅•nH₂O (b) 10 wt% (c) 20 wt% (d) 30 wt% (e) 33 wt% (f) 40 wt% (g) AlTaO₄

以上の酸性質と構造の検討結果を考え合わせると担持量 33 wt%まではアルミナ上において タンタル酸化物はモノレイヤーで担持され, Brønsted 酸点は T 相 Ta₂O₅ に類似した構造を持つモ ノレイヤーのタンタル酸化物上に発現し, 33 wt%以上においてタンタル酸化物は Brønsted 酸点 を持たない T 相 Ta₂O₅ を形成し, これにより, Friedel-Crafts アルキル化反応活性は低下すること がわかった.

引用文献

(-)	(1)	Tanabe, K.;	Okazaki, S. Applied	Catalysis A-General	l 1995, 133, 191.
-----	-----	-------------	---------------------	---------------------	-------------------

- (2) Ohuchi, T.; Miyatake, T.; Hitomi, Y.; Tanaka, T. *Catalysis Today* **2007**, *120*, 233.
- (3) Shishido, T.; Kitano, T.; Teramura, K.; Tanaka, T. *Catalysis Letters* **2009**, *129*, 383.
- (4) Shishido, T.; Kitano, T.; Teramura, K.; Tanaka, T. *Topics in Catalysis* **2010**, *53*, 672.
- (5) Ushikubo, T.; Wada, K. *Applied Catalysis* **1990**, *67*, 25.
- (6) Okumura, K.; Yamashita, K.; Hirano, M.; Niwa, M. Journal Of Catalysis 2005, 234,

300.

(7) Yoshida, S.; Tanaka, T.; Hanada, T.; Hiraiwa, T.; Kanai, H.; Funabiki, T. *Catalysis Letters* **1992**, *12*, 277.