『SPring-8における材料評価の実際』

高輝度光科学研究センター 産業利用推進室 廣沢一郎

SPring-8の位置

兵庫県西部(西播磨) 山陽新幹線相生駅より バス35-40分

大型放射光施設 (高輝度なX線源) 高輝度なX線を用いた研究、分析

H20.11.7

SPring-8のビームライン 共用BL26本稼動中

● BL22XU JAEA 量子構造物性	医学・イメージング BL20B2 ¥
(日本原子力研究開発機構) ● PL 02014 14 FA 新三市利益	医学・イメージング BL20XU ¥
■ BL2350 JACA 里儿希科子 (日本復子力研究開発總備)	産業利用 BL19B2 ¥
● BL24XU 兵庫県ID (兵庫県)	理研物理科学 BL19LXU ◆
¥ BL25SU 軟X線固体分光	理研 物理科学 Ⅲ BL17SU ◆
◆ BL26B1 理研構造ゲノム I	サンビームBM BL16B2 ●
◆ BL26B2 理研構造ゲノム	(産業用専用日上共同体)
¥ BL27SU 軟X線光化学	サンビームD BL16XU (存金用車用PL 共同体)
¥ BL28B2 白色X線回折 29 28 27 c0 23 24 23 27	広エネルギー帯域先端材料解析 BL15XU ●
◆ BL29XU 理研物理科学 31 30 22 21	(物質·材料研究機構)
◆ BL32XU 理研ターゲットタンパク 32	20 産業利用 BL14B2 ¥
• BL32B2 創薬産業 · /33 SPring• 8	18 (□ JAEA 物資科子 BL14B1 ●
(蛋白質構造解析コンソーシアム) /34	17 () 表面界面構造解析 BL13XU ¥
○ BL33XU 豊田 //35	NSRRC BM BL12B2 ●
● BL33LEPレーザー電子光 A/36	(台湾 NSRRC)
(大阪大学核物理研究センター) ビームラインマップ	(##NSBRC)
¥ BL35XU 高分解能非弹性散乱	JAEA 量子ダイナミクス BL11XU ●
¥BL37XU分光分析 ▲ ▲ ▲ ▲ ▲ 38 ビームライン総数:62本 ▲	13 (日本原子力研究開発機構)
★ BL38B1 構造生物学 Ⅲ) 12 月 尚上備這物性 BL10XU 千
■ BL38B2 加速器診断 // (40 ・挿入光源(30 m) : 4本 () 11 极天鳴散乱 BL09XU 辛
¥BL39XU 磁性材料 ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓	10/7 兵庫県BM (兵庫県) BL08B2 ●
¥ BL40XU 高フラックス ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲	9// 高エネルキー非弾性敗乱 BLOSW 年
¥ BL40B2 構造生物学Ⅱ 43	8 泉京大学初興科学アフトステージョン BL07LSU 〇 (国立大学法人東京大学)
¥ BL41XU 構造生物学Ⅰ	加速器診断 BL05SS ■
¥ BL43 IR 赤外物性	高エネルギーX線回折 BL04B2 ¥
● BL44XU 生体超分子複合体構造解析 44 48 1 2 3	 ● 高温高圧 BL04B1 ¥
(大阪大学蛋白質研究所) ▲ PL 44P2 理研 標準性物質 目	フロンティアソフトマター開発産学連合 BL03XU 〇
◆ <u>BL449Z</u> 理研 傅道主物子 II ▲ <u>BL45YU</u> 週耳 總進作物勞 I	(フロンティアソフトマター開発専用ビームライン産学連合体)
 ▼ BL45X0 建研 備這生物学 ▼ PL 46XU 産業利用 Ⅲ ▼ PL 46XU 産業利用 Ⅲ 	初木和田供道所引 DLU2D2 ← ※社員課注報近 DL02D1 ¥
T BL47AU REFMR R POLCI	AATS BLUIBI +
BL: ビームライン IR: 赤外光	
B1, B2: 偏向電磁石 LEP: レーザー電子光	★:共用ピームライン
XU: X線アンジュレータ LXU: 長尺X線アンジュレータ	 ●:専用ビームライン
SU: 収X線アンジュレータ LSU: 長尺軟X線アンジュレータ	◆:理研ビームライン
W: ワイグラー SS: 直線部	■:加速器診断

SPring-8の放射光の特徴 高エネルギー & 高輝度

物質の透過能高い 重元素の吸収端を励起

<u>高輝度</u>

平行性高い(高い角度分解能) 明るい (微小域、微量、希薄、短時間測定)

高エネルギーX線の透過性を利用して深部の知見を得る

<u>50KeV</u>以上のX線回折(BL28B2)

重元素のK吸収端測定が可能

H20.11.7

測定対象が広い

高輝度X線の利用例(1) 高分解能粉末X線回折

住友金属 谷山氏

2005年金属学会論文賞受賞

 $z_{n} = -\mu \frac{z_{n}}{r_{n}}$

Fe

Fe

LSIでの放射光利用 SPring-8での利用事例

高輝度・高エネルギーの特徴を活かした利用

Z.Liu et al., Appl. Phys. Lett. 92, 192115 (2008)

化学状態:XPS 表面敏感な分析法(埋もれた界面は困難)

構造(非晶質): EXAFS 近接原子のみを観測(最近接は酸素、組成の違い見えず)

RTA(活性化処理)前後のSi 1Sスペクトルの変化

接合界面破壊

Hf_{0.74}Si_{0.26}O₂のX線侵入深さ

SPring.8 LSIでの放射光利用(3) 非晶質薄膜の構造検討: 高輝度・高エネルギーの活用

H20.11.7

厚さ5nmのシリケート膜の構造の違いを観測 (XAFSでは違いが不明瞭)

透明導電膜(IZO)、反射防止膜(SiOx)、被覆膜(DLC)等にも適用

SPring-8での産業利用

SPring-8を利用するには

SPring-8ご利用までの流れ

09A期課題申請募集中 12/11 10:00締切

担当コーディネータ

蛍光X線分析担当	二宮利男	ninomiya@spring8.or.jp	0791-58-0963
電子材料担当	古宮聰	komiya@spring8.or.jp	0791-58-0935
半導体材料担当	渡辺義夫	y.wata@spring8.or.jp	0791-58-2804
金属材料担当	橋本保	hashimot@spring8.or.jp	0791-58-0991
無機材料担当	梅咲則正	umesaki@spring8.or.jp	0791-58-0834
触媒担当	杉浦正洽	sugiuram@spring8.or.jp	0791-58-2706
高分子材料担当	堀江一之	horiek@spring8.or.jp	0791-58-2847
生体物理担当	八田一郎	hatta@spring8.or.jp	0791-58-2854

09A期課題申請募集中 12/11 10:00締切