

放射光産業利用セミナー SPring-8/SAGA-LSコラボレーション サンメッセ鳥栖, 2008/11/07(金)

誘電体材料 Ba_{1-x}Ca_xTiO₃ /こおける Caの局所構造解析

〇安川勝正, 田中政博, 東勇介(京セラ株式会社) 岡島敏浩(九州シンクロトロン光研究センター) 松村大樹, 西畑保雄, 水木純一郎(日本原子力研究開発機構)

Outline

- 1. 背景
- 2. 実験
- 3. 結果と考察

■XANES:Caの固溶サイト ■EXAFS:Caのoff-center原子位置 4. まとめ

<u>Multi-Layered</u> <u>Ceramic</u> <u>Capacitor</u>

 BaTiO₃ 系Ni内部電極 積層セラミックコンデンサ

■ 小型•高容量•<u>高信頼性</u>•<u>温度安定性</u>

ex. 0603 type: 0.6 × 0.3 × 0.3 (mm)

BaTiO₃

空間群: P4mma=b=3.9956 Å c=4.0433 Å $\alpha = \beta = \gamma = 90.0^{\circ}$ Z=1 (5 atoms/unit cell) Ba_{1-x}Ca_xTiO₃の格子定数

FIG. 4. Lattice parameters of $Ca_x Ba_{1-x} TiO_3$ vs molar ratio x (room temperature).

T. Mitsui *et al.* Physical Review 124 (1961) CaTiO₃

空間群 : *Pnma* a=5.3789 Å b=5.4361 Å c=7.6388 Å $\alpha = \beta = \gamma = 90.0^{\circ}$ Z=4 (20 atoms/unit cell)

実験: Caの固溶サイト

■ 第一原理計算 •構造最適化 •原子間距離

(Extended X-ray Absorption Fine Structure) ・デバイワラー因子

第一原理計算

SAGA-LS岡島氏による計算

•構造最適化 ••• VASP •BaTiO₃ A-site 置換モデル 2×2×2 supercell (40原子) •BaTiO₃ B-site 置換モデル •V1:Ti⇒Ca •V2:Ti⇒Ca, O欠陥(ab面内) •V3:Ti⇒Ca, O欠陥(c軸方向) •CaTiO₃(参照試料) (2×2×1 supercell(80原子)) Ba Ti •P1の対称性で構造最適化後, 対称性を探す. •A-site置換モデル : P4mm •B-site置換モデル •V1 : P4mm : *Pm* •V2 •V3 : P4mm

プログラム・・・Wien2k

- ◆Core holeを考慮した計算
- ◆遷移エネルキー:

励起状態と基底状態とのエネルギー差で評価

◆ピーク半値幅 FWHM=1eV

XAFS実験(Ca K-edge)

Ĕ	ームライン
単	色器
分	光結晶

: SAGA-LS/BL15 :2結晶分光器

: Si(111)

:Ca *K*-edge

(4.038keV)

測定吸収端

 I_{o}

gas

測定法

- : 蛍光法 :ion chamber (17cm) :He 70% + N₂ 30%
- *I*₁ :SDD Siマルチカソード検出器 有感面積50mm²

Si multi-cathode detector (SDD)

Ca K-edge XANESスペクトル(実験)

BaTiO₃:Ca

CaTiO₃とBaTiO₃:Caとの 間で、メインピーク (4049eV)の低エネルギー 側のスペクトルの形状に特 に違いが見られる.

BaTiO₃にドープしたCa原子の局所構造は、CaTiO₃のものと若干違っている.

実験と計算との間で良い 一致が見られる

計算の妥当性

$\Delta E=-15.8eV(\Delta E/E=0.39\%)$

CaがA-siteのBaを置換する モデルで計算したスペクトルは 実験スペクトルを良く再現している

 $\Delta E=-15.8eV(\Delta E/E=0.39\%)$

■ 第一原理計算
 ・構造最適化
 ・原子間距離

(X-ray Absorption Near Edge Structure) ・Caの固溶サイト

(Extended X-ray Absorption Fine Structure) ・デバイワラー因子

第一原理計算

化学式

空間群

Supercell

プログラム

: Ba₇Ca₁Ti₈O₂₄ (Ba_{0.875}Ca_{0.125}TiO₃) : 2 × 2 × 2

- : CASTEP ver.4.0
- 交換相関ポテンシャル : LDA (local density approximation)
 - : *P*4mm

Aサイト置換モデル: 1/8 Ba

(Å)		凹C1立 <i>致</i>	
	2.763	4	
Ba-O	2.784	4	
	2.848	4	
σ² (Ų)	0.0016		

BTOとBCTOのBa-Oの原子間距離はほぼ同じ Caltc軸方向に変位し、配位環境はBaと異なる

THE NEW VALUE FRONTIER

原子間距離 (Å)		配位数	
	2.493	4	
Ca-O	2.736	4	
	3.046	4	
σ² (Ų)	0.053		
	2.760	4	
Ba-O	2.788	4	
	2.872	4	
σ² (Ų)	0.0025		

17

EXAFS実験(Ba K-edge)

ビームライン 単色器 分光結晶

: **SPring-8/BL14B2** :2結晶分光器 : Si(311)

測定吸収端 :Ba *K*-edge (37.41keV)

測定法 :透過法(50ms/point)
I_o :ion chamber (17cm)
gas : Ar 75% + Kr 25%

 I_1 :ion chamber (31cm) gas :Kr 100%

本実験はSPring-8の重点産業利用課題 (課題番号:2007B1953)として実施しました。

EXAFS実験(Ca K-edge)

Ĕ-	ームライン
単	色器
分	光結晶

:SAGA-LS/BL15
:2結晶分光器
: Si(111)

:Ca *K*-edge

(4.038keV)

測定吸収端

 I_{0}

gas

測定法

- : 蛍光法 :ion chamber (17cm) :He 70% + N₂ 30%
- *I*₁ :SDD Siマルチカソード検出器 有感面積50mm²

Si multi-cathode detector (SDD)

BTOとBCTOのk³χ(k)および動径構造関数はほぼ一致

20

KYDCERa Ca K-edge EXAFS測定結果

 $2.5 \le k \le 9$

BTOのBa-Oのピーク強度に比べ BCTOのCa-Oのピーク強度は小さい

フィッティング結果

Ba/Ca-O: 1シェルモデル(12配位)のフィッティング結果

ba n-euge		
		O1
BTO	R(Å)	2.82(1)
	C ₂ (Å ²)	0.008(1)
всто	R(Å)	2.82(1)
	C ₂ (Å ²)	0.008(1)

Do Kodao

(参考:XRD 2.83Å)

fitting: R空間

R範囲: 1.5~4.0

N:モデル値(固定)

S₀² = 0.88(固定、FEFF8.2)

dE:共通

dR:モデルからの差分

キュミュラント: C,まで

Ca <i>K</i> -edge			
	O1		
всто	R(Å)	2.69(5)	
	C ₂ (Å ²)	0.035(6)	

使用ソフト: Athena 0.8.057 Artemis 0.8.012

fitting: R空間

R範囲: 1.5~3.0

N:モデル値(固定)

S₀² = 0.92(固定、FEFF8.2)

dE:共通

dR:モデルからの差分

キュミュラント: C,まで

	ВТО	BC	то
	σ²[Ba−0] (Ų)	σ²[Ba−0] (Ų)	σ²[Ca−0] (Ų)
第一原理計算 原子間距離の分散 Ba _{1-x} Ca _x TiO ₃ (x=0.125)	0.0016	0.0025	0.053
実験 EXAFS デバイワラー因子C ₂ Ba _{1-x} Ca _x TiO ₃ (x=0.05)	0.008(1)	0.008(1)	0.035(6)

第一原理計算は絶対零度の計算である。 正方晶(室温)における(1シェルの)静的なDWを見積もっている。 EXAFSから計算される室温の C_2 は静的および熱振動の要因を含む。 従って、室温における一般的な C_2 の値(0.005 Å²)を考慮すると、 計算結果と実験結果はコンシステントであり、 Caltオフセンタリングしていると考えられる。

<u>BCTO Ca K-edge FEFFシミュレ</u>ーション

k weight = 1

Ca off-center model

誘電率の温度特性

- ■第一原理計算とXANES実験により、BCTO中のCaがBa サイトを置換していることがわかった。
- 第一原理計算によって、BCTO中のCaはBaの平衡位置から 変位した位置に存在することが予測された。 EXAFS実験により得られたCa-Oのデバイワラー因子から BCTOのCaがBaの原子位置に対してオフセンタリングして いると考えられる。

今後の方針

高温EXAFS実験 Ba K-edge SPring-8/2007B1953
 Ca K-edge PF/2008I001
 高分解能X線回折実験 SPring-8/2008A1820

Thank you for your attention !

KYOCERA Corporation