

SPring-8の放射光光源

偏向電磁石光 (Bending Magnet) 輝度 回転対陰極の5桁増し

Undulator**光**源 輝度 回転対陰極の<u>9桁</u>増し

放射光の威力 (粉末X線回折)

実験室系とのデータ比較例

同一試料での比較

 $Yb_{2.75}C_6$

試料に適したエネルギー 高強度 高指向性

大阪市立大学(現東北大学) 谷垣教授 提供

放射光の威力 (X線反射率での薄膜評価)

特性の異なるCVDで形成したLSI用酸窒化膜の評価 (BL46X)

Z.Liu et al., Appl. Phys. Lett. 92, 192115 (2008)

放射光の威力(時分割測定)

自動車用防錆鋼板の亜鉛鍍金の合金化過程 (BL19B2)

0.1秒の時間分解能で回折パターンを測定

SPring8の放射光利用

光源の特徴

特徴を活かした利用

高強度(明るい)

微量測定高速測定

イメージング

高指向性(平行)

微小領域測定 高分解能測定

回折•散乱

高エネルギー

深部測定

XAFS

連続波長

元素選択

光電子分光

SPring8の放射光産業利用

エレクトロニクス

小はLSIから、 大は構造材料まで

素材 金属、高分子、建材

- •LSI
- •DVD,CD
- •LCD
- •PDP
- •HD(HDD)

軟は化粧品から、 硬は切削工具まで

- •鋼材
- •建材
- •工具
- •繊維
- ・ゴム
- •プラスチック

環境・エネルギー

- •燃料電池
- •二次電池
- •太陽電池
- •環境(土壌、廃棄物)
- •触媒

製薬・日用品

- •医薬•原薬錯体
- •歯磨き
- •化粧品
- •ヘアケア製品

SPring-8 ビームラインマップ

2008.1.7現在

表面界面構造解析 BL13XU ¥

JAEA 量子ダイナミクス BL11XU ●

NSRRC BM BL12B2 •

NSRRC ID BL12XU .

(日本原子力研究開発機構) 高圧構造物性 BL10XU ¥

核共鳴散乱 BL09XU ¥

加速器診断 BL05SS ■

(台湾 NSRRC)

(台湾 NSRRC)

		_	-		
	(大阪大学を	物理	研究	センタ-	-)
¥	BL35XU	高分	分解 的	能非引	単性散
¥	BL37XU	分)	七分村	折	
¥	BL38B1	構道	5生生	勿学	Ш

(蛋白質構造解析コンソーシアム)

BL33LEPレーザー電子光

■ BL38B2 加速器診断

○ BL33XU 豊田

(豊田中央研究所)

¥ BL39XU 磁性材料 ¥ BL40XU 高フラックス

¥ BL40B2 構造生物学 Ⅱ ¥ BL41XU 構造生物学 |

¥ BL43 IR 赤外物性

■ BL44XU 生体超分子複合体構造解析 (大阪大学蛋白質研究所)

◆ BL44B2 理研 構造生物学 || ◆ BL45XU 理研 構造生物学

¥ BL46XU 産業利用 Ⅲ

From 2008A (多軸回折, HAXPES) ¥ BL47XU 光電子分光・

区

分

26 14 2 49 稼動中 調整·建設中 0 計 **26** 53 光源(30 m) : 23 本 磁石 Since 2005A

В

共用

専用

数

理研

兵庫県BM (兵庫県) BL08B2 ● エネルギー非弾性散乱 BL08W ¥ 質科学アウトステーション BL07LSU 〇 (国立大学法人東京大学)

計

合

加速器診断

-X線回折 BL04B2 ¥ 高温高圧 BL04B1 ¥

フロンティアソフトマター開発産学連合 BL03XU 〇 粉末結晶構造解析 BL02B2 ¥

> 単結晶構造解析 BL02B1 ¥ XAFS BL01B1 ¥

共用ビームライン民間企業実施課題(08A)

BL19B2

第二ハッチ 多軸回折装置 粉末回折装置

第三ハッチ 小角散乱

60 m 80 m 100 m 120 m

第二&第三ハッチ 極小角散乱

(試料は第二ハッチ、検出は第三ハッチ)

BL19B2 X線イメージング

高指向性、単色性(分光)、任意波長(エネルギー)

屈折コントラスト(位相コントラスト)像

軽元素など吸収差が小さい対象も観測可能

P&G 佐野 高分子学会誌

BL19B2(粉末X線回折)

高指向性、単色性(分光)、任意波長(エネルギー)

電子密度分布に代表される、精密な結晶構造が得られる

 $(Sn_{0.9}In_{0.1})P_2O_7$

SPring-8重点産業利用成果報告書2008A セイミケミカル 伊藤孝憲、白崎紗央里

BL19B2 小角散乱 (極小角散乱)

高指向性、単色性(分光)

高エネルギーX線でも高い波数分解能 (透過性が高い)

広い測定波数領域

BL14B2 (XAFS)

XAFS (X線吸収微細構造)

透過法の配置

試料雰囲気制御にも対応

XAFSの特徴 (BL14B2)

XAFS:吸収端近傍でX線吸収スペクトルに観測される振動構造

吸収元素の価数、配位状態を反映

吸収端エネルギーは元素固有 元素ごとの分析が可能

液体、非晶質、微量添加元素の分析に有効

XAFS分析で得られる知見

(BL14B2)

XAFS分析例 (PDP用青色蛍光体 BAM)

PDP用青色蛍光体 BaMgAl₁₀O₁₇:Eu <u>添加元素 Euの位置</u>

BL14B2でXAFS測定が可能な元素

DL40AU

時分割測定等に威力

水面上単分子膜の面内構造 (BL46XU)

両親媒性メロシアニン色素

Cd²⁺、Mg²⁺を含む下層液表面で周期構造形成?

すれすれ(微小角)入射X線回折(BL46XU)

入射角が全反射臨界角より浅い場合 X線の侵入深さが極く浅くなる

表面敏感

測定装置構成と測定条件 (BL46XU)

多軸回折装置の利用

測定データ例と推定分子配列 (BL46XU)

液面上の単分子膜の分子配列を決定

N. Kato et al. Phys. Rev. Lett. 94, 136404 (2005)

(* X線照射による劣化が気になる試料はBL19B2が適する)

硬X線光電子分光 (HAX-PES) (BL46XU)

光電子脱出深度の X線エネルギー依存

X線エネルギーが高い

光電子の運動エネルギーが高い

脱出深さが大きい

光イオン化版面積の X線エネルギー依存

高輝度光源で克服

物質深部の情報を得る

有機物試料の照射劣化が少ない

10nm下を観測 p-Si 10nm HfSiO2 High-k Si substrate Hf 3d スペクトル 6000 TOA 80° TOA 30° 4000 Intensity 2000 4280 4284 4288 4292 4296

Kinetic Energy (eV)

E. Ikenaga et al., J. Electron Spectrosc. Relat. Phenom. 144-147, 491 (2005)

最後に

産業利用ビームライン 多様な測定手法に対応した測定装置

BL19B2

X線イメージング装置、 粉末X線回折装置、多軸回折装置、小角散乱装置

BL14B2

XAFS(透過法、蛍光法、転換全電子収量法)

BL46XU

多軸回折装置、薄膜回折装置、硬X線光電子分光装置

新規利用のご相談 大歓迎

お問い合わせは support@spring8.or.jp