SPring-8

三原果山

大裝動物 时時期設

1.00

用実験施設

宝装摄

共用ビームラインにおける産業利用

000

M M : 2000 11.4

SPring-8の放射光光源

偏向電磁石光 (Bending Magnet) 輝度 回転対陰極の<u>5桁</u>増し

Undulator光源	
輝度	回転対陰極の <u>9桁</u> 増し

大阪市立大学(現東北大学) 谷垣教授 提供

放射光の威力 (X線反射率での薄膜評価)

特性の異なるCVDで形成したLSI用酸窒化膜の評価 (BL46X)

Z.Liu et al., Appl. Phys. Lett. 92, 192115 (2008)

放射光の威力(時分割測定) 自動車用防錆鋼板の亜鉛鍍金の合金化過程(BL19B2)

0.1秒の時間分解能で回折パターンを測定

時間分解能 0.01秒の事例もあり

A. Taniyama et al., Material Trans. 45, 2326 (2004)

SPring8の放射光利用

SPring8の放射光産業利用

SPring-8 ビームラインマップ

2008.1.7現在

共用ビームライン民間企業実施課題(08A)

BL19B2

BL19B2 X線イメージング

高指向性、単色性(分光)、任意波長(エネルギー)

屈折コントラスト(位相コントラスト)像

軽元素など吸収差が小さい対象も観測可能

BL19B2 (粉末X線回折) 高指向性、単色性(分光)、任意波長(エネルギー)

電子密度分布に代表される、精密な結晶構造が得られる

 $(Sn_{0.9}In_{0.1})P_{2}O_{7}$

SPring-8重点産業利用成果報告書2008A セイミケミカル 伊藤孝憲, 白崎紗央里

BL19B2 小角散乱 (極小角散乱) 高指向性、単色性(分光) 高エネルギーX線でも高い波数分解能 (透過性が高い)

広い測定波数領域

XAFSの特徴 (BL14B2)

XAFS:吸収端近傍でX線吸収スペクトルに観測される振動構造

吸収元素の価数、配位状態を反映

吸収端エネルギーは元素固有 元素ごとの分析が可能

液体、非晶質、微量添加元素の分析に有効

XAFS分析で得られる知見 (BL14B2)

I. Hirosawa et al., IEICE Trans. Electron. E89-C, 1413 (2006)

BL14B2でXAFS測定が可能な元素

$DL40\Lambda U$

水面上単分子膜の面内構造 (BL46XU)

両親媒性メロシアニン色素

Cd²⁺、Mg²⁺を含む下層液表面で周期構造形成?

すれすれ(微小角)入射X線回折(BL46XU)

Incident angle (deg)

測定装置構成と測定条件 (BL46XU)

多軸回折装置の利用

測定データ例と推定分子配列 (BL46XU)

液面上の単分子膜の分子配列を決定

N. Kato et al. Phys. Rev. Lett. 94, 136404 (2005)

(* X線照射による劣化が気になる試料はBL19B2が適する)

硬X線光電子分光 (HAX-PES) (BL46XU)

光電子脱出深度の X線エネルギー依存

 光イオン化版面積の X線エネルギー依存

脱出深さが大きい

高輝度光源で克服

物質深部の情報を得る 有機物試料の照射劣化が少ない

E. Ikenaga et al., J. Electron Spectrosc. Relat. Phenom. 144-147, 491 (2005)

最後に

産業利用ビームライン 多様な測定手法に対応した測定装置

BL19B2

X線イメージング装置、粉末X線回折装置、多軸回折装置、小角散乱装置 BL14B2

XAFS (透過法、蛍光法、転換全電子収量法)

多軸回折装置、薄膜回折装置、硬X線光電子分光装置

お問い合わせは support@spring8.or.jp