アルミニウム珪酸塩ナノチューブとナノ粒子の表面化学修飾に伴う構造変化

山本 和弥^a、松野 亮介^a、佐々木 園^b、今田 裕士^b、料所 祐二^b、加藤 健一^c、<u>高原 淳</u>^a ^a九州大学先導物質化学研究所、^b九州大学院工学研究院、^c高輝度光科学研究センター

背景: イモゴライトは粘土鉱物の一種であり九州 地方の火山灰由来土壌の粘土画分中にて発見された、 外径 2-3 nm、長さが百 nm から数um の粘土としては ユニークな形状のナノチューブで、それ自身でネッ トワーク構造を形成する。一方、アロフェンはイモ ゴライトのナノチューブが閉じた直径 3-5nmの球状 の中空ナノ粒子であり、ナノ粒子が連結したひも状 の会合体を形成する。図1はアロフェンとイモゴラ イトの構造モデルである。これらの天然アルミノシ リケートは特異的なナノ構造を有しているため、ナ ノフィラーやナノ空間を利用した新しい機能材料と して期待されている。著者らは、これまでアロフェ ンとイモゴライトの凝集構造とその温度依存性、お よびそれらを有機低分子で化学修飾したものの凝集 構造を広角 X 線回折(WAXD)法により明らかにした。 本研究では、ナノハイブリッド材料構築に関する基 礎的な知見を得るため、ナノファイバーに高分子を 修飾した系及びナノ粒子に金属イオンを吸着させた 系の凝集構造について得られた結果を報告する。

<u>実験</u>:イモゴライト及びアロフェンは、不純物を取 り除いたゲルを弱酸性溶液に加え、超音波処理を施 し水溶液中で分散させ、凍結乾燥を行うことで調製 した。試料の WAXD 測定は BL02B2 を用い、試料を ガラスキャピラリー($\phi=0.3$ mm)に充填して行った。 X線の波長は 0.1nm であった。また、温度変化測定 は測定温度にて 5 分間保持後、測定を行った。それ ぞれのサンプルの測定時間は 5 分間であった。また イモゴライトの高分子修飾剤としてポリビニルアル

図1 イモゴライトとアロフェンの構造モデル

コール(PVA:Pn=630)、アロフェンの金属修飾剤として、Cu(NO₃)₂・3H₂Oを用いた。

結果および考察:図2はPVAで修飾したイモゴライ ト粉末の WAXD の温度依存性である。ここで、散乱 ベクトル qは $4\pi \sin\theta \lambda$ (θ : ブラッグ角、 λ : 入射 X 線の波長)と定義される。イモゴライトファイバー が配列したバンドル部分からの回折が観測され、そ れらのピーク位置から求めた d は 1.83nm、1.36nm (020)、および0.80nm(030)であった¹⁾。他に*d*=0.45nm に対応する g で結晶性 PVA の回折ピークが確認でき ることから、PVA が部分的に結晶化していると考え られる。また、573Kまで昇温しても d=1.36-1.83 nm のブロードな回折プロファイルはあまり変化しなか った。これは、未修飾のイモゴライトで見られるよ うな分子間吸着水の脱着による分子の再配列が進行 しないことを示唆している。PVA を修飾したイモゴ ライトでは、昇温過程でファイバー間の間隔に対応 する回折にピークシフトが見られないため、PVAが

イモゴライト分子間だけではなくイモゴライト束の 最表面に吸着したために、イモゴライト束の運動が 拘束されたのではないかと考えられる。

図 3 に、Cu イオンを吸着させた allophane 粉末の 昇温測定における WAXD プロファイルを示す。 373K-473Kでは低g領域 (8-20 nm⁻¹の範囲)に鋭いピ ークが観測されたが、523Kで $q = ca. 30 \text{ nm}^{-1}$ にピー クが出現し、低q領域のピークが消失した。573Kで は、高 q 領域に鋭いピークが数多く出現した。さら に温度を上昇させると、それらのピーク強度は増大 した。523Kの高温で観測された鋭いピークは金属類 からの回折であると考えられることから、高熱で銅 酸化物が形成されたことを示唆している。図4は、 アロフェン粉末の WAXD パターンの温度依存性で ある。373Kから試料の温度が上昇するに伴い、q= 14.3 nm⁻¹ (*d* = 0.44 nm)の回折ピーク(a)の強度が増大 し、 $q = ca.18.5 \text{ nm}^{-1} (d = 0.34 \text{ nm}) および 27.8 \text{nm}^{-1} (d$ =0.23 nm)の回折ピーク (b および c)の強度は減少し た。673K 以上の温度では、(b),(c)のピークはほとん ど観測されなかった。Henmi らも以前同様な結果を 示しており、シリカゲルの回折プロファイルとの比 較から、(b)はSiO四面体、(a)はその四面体が重合し た構造に起因すると報告している²⁾。図3に示すよ うに、Cu イオンを吸着させた allophane 粉末の WAXD プロファイルでは上述の回折にピークシフ トが観測されなかったことから、SiO 四面体が縮合 できない状態にあると考えられる。このことから、 Cuイオンが内側の SiOH と相互作用し、縮合を阻害 していることが示唆された。

<u>今後の課題</u>: BL02B2 で修飾イモゴライトやアロ フェンを微量試料で WAXD 測定することが可能と なりナノファイバー、ナノ粒子の凝集構造評価法と して大変有用であることが確認された。今後、ナノ ハイブリッド材料構築のために有機低分子、高分子、 金属イオンで修飾したナノフィラー複合系の凝集構

図 2 PVA を吸着させたイモゴライト粉末の WAXD プロファイルの温度依存性.

図3 Cuイオンを吸着させたアロフェン粉末のWAXD プロファイルの温度依存性.

図4 アロフェン粉末のWAXDプロファイルの温度依存性.

造解析を進めたいと考えている。

参考文献

1) K. Wada, American Miner. 54 (1969), 50.

2) T. Henmi, K. Tange, T. Minagawa, N. Yoshinaga, Clays and Clay Miner., **29** (1981), 124.

発表論文

[1] A. Takahara, K. Yamamoto, R. Matsuno, H. Otsuka, S.-I. Wada, Proc. SPE(2003).