高アスペクト比ナノポーラス体形成のための 電気化学処理によるポアー形成過程の3次元構造解析 3D observation of pore evolution by electrochemical process for nano-porous materials with high aspect ratio

安田秀幸 °、土'山明 ^b、中野司 ^c、上杉健太朗 ^d、大中逸雄 ^a、林義則 ^a、竹澤伸洋 ^a

[®]大阪大学大学院工学研究科、^b大阪大学大学院理学研究科、 [©]産業技術総合研究所、[®]高輝度光科学研究センター

<u>背景</u>

ナノレベルあるいはそれに近いスケール の多孔体は、高精度のフィルター、触媒機 能を担持するための媒体などの応用が考え られる。ナノオーダの多孔体の作製は、陽 極酸化など電気化学的手法が報告されてい る。この手法では、数 nm から数 10nm の ポアを有した多孔体が形成できる。アスペ クト比も比較的大きな多孔体も形成できる が、電気化学現象における自己組織化を利 用しているため、任意にポアの大きさ、間 隔を制御することは容易ではなく、サイズ の制御には限界があるのが現状である。

一方、数 100µm 以上のマクロなポアを 有した多孔体は多く製造されており多孔体 の構造の制御も比較的可能である。しかし、 この製造プロセスの改良ではミクロンから ナノオーダの多孔体を形成することはでき ない。また、非常に高いアスペクト比を有 した多孔体は種々の応用が考えられるが、 アスペクト比の高いポアの形成にも課題が 多い。そこで、従来開発されている手法で は困難な領域の多孔体を形成する方法を確 立し、高アスペクト比ナノポーラス材料を 目指している。

本研究では Al-In 合金を用いた単結晶 Al の超微細多孔体の形成を目指している。多 孔体形成には、磁場中結晶成長を利用した 初期組織形成、塑性加工による組織の微細 化、電気化学的手法による特定物質の選択 的溶解を組み合わせた手法を開発している。 アスペクト比が高いポアを目指した初期組 織の評価や電気化学プロセスで作製された ポアの評価には、ポアの均一性、連続性の 評価が必要不可欠である。走査型電子顕微 鏡観察では、ポアは形成できているかどう かは確認できても、連続性などを評価する ことはできない。ミクロンオーダのポアの 連続性や均一性を評価できる手法は、 SPring8 におけるマイクロX線 CT 以外に はない。さらに、CT の空間分解能の向上 は多孔体の開発には大きく貢献できると考 えられ、観察手法の発展と材料開発は密接 にリンクしている。

<u>実験方法</u>

BL47XU のビームラインを利用し、X 線トモグラフ観察を行った。このビームラ インでは、15-30keV 付近の単色 X 線を安 定して試料に照射することが可能であり、 Al、In を含んだ試料観察が可能であった。

透過像の撮影は、可視光変換型の高分解 能検出器を用いた。1000x1018 ピクセル (約 0.5µm 角)の透過像をそれぞれ露光時 間 0.5-2 秒で撮影した。プロジェクション 数は 750 である。また、屈折コントラスト を排除するために試料とX線検出器はでき る限り近接させている。スライス像の再構 成には畳み込み逆投影法(Convolution Back-Projection method)を用いた。得られる CT 像は最大 1000 x 1000 ピクセルで、1 画素 のサイズは高さ方向も含めて 0.5 x 0.5 x 0.5µm である。Al-In 合金およびその合金 から作製した Al 多孔体の透過像を撮影し たX線のエネルギーは 15keV である。

<u>結果および考察</u>

多孔体を形成するための初期組織は Al-In 偏晶系合金を磁場中で結晶成長すること により得た。数ミクロンから 10 ミクロン 程度のロッド状 In が配列した組織が形成 されることを見いだした。マイクロ X 線 CT の測定条件や In ロッドの連続性は、2002Bの研究課題で確認した。

図1はAl-10at%In 合金の一方向凝固組織 のマイクロX線 CT により得られた3次元 像である。In ロッドが連続的に成長してい ることが CT より確認された。マイクロX 線 CT を使用し、形成条件を詳細に決定で きた。

 \boxtimes 1 (a) outlook of the Al-In alloy and (b) In rods obtained by the micro X-ray CT.

 \boxtimes 2 Polarization curves of pure Al, pure In and the Al-10at%In alloy.

図 2 は、図1で観察された In ロッドが 配列した Al-In 合金の分極曲線である。参 考のため、Al および In の分極曲線も示し ている。図から明らかなように、-0.1V 付 近で Al 相と In 相に顕著な電流差が観察さ れ、この条件で In の優先的な溶解が可能 であることが明らかになった。

図3はAl-In 合金から図2で示した条件で In を除去した試料の3次元像である。この 図ではポアを抽出している。図から明らか なように数µm から 20µm 径のポアが深さ 500µm 程度形成できることが明らかになっ た。さらにポア径の深さ方向の変化を測定 することにより、現状におけるアスペクト 比の限界も評価できると期待され、現在解 析を進めている。

 \boxtimes 3 3D images of the porous Al produced by the electrochemical (a) Outlook, (b) pores in the Al matrix.

<u>今後の課題</u>

本課題において、磁場中凝固・塑性加 工・電気化学処理を組み合わせた多孔体成 形プロセスは可能であることが示された。 今後、初期組織制御・電気化学処理の開発 にはマイクロX線 CT との連携が不可欠で ある。さらに、塑性加工によるポアのナノ レベルの微細化も行っており、このような 組織の評価にも SPring8 の放射光施設の利 用が期待される。

発表論文

 H. Yasuda, I. Ohnaka, S. Fujimoto, A. Sugiyama, Y. Hayashi, M. Yamamoto, A. Tsuchiyama, T. Nakano, K. Uesugi, K. Kishio, Materials Letter, in press.

[2] H. Yasuda, I. Ohnaka, S. Fujimoto, Y. Hayashi, M. Yamamoto, K. Kishio,
A. Tsuchiyama, T. Nakano, K. Uesugi, Proc. Electromagnetic Materials Processing (EPM2003), Lyon, (2003), in press.

[3] 安田秀幸、林義則、竹澤伸洋、大中逸 雄、藤本慎司、杉山明、岸尾光二、日本金 属学会秋期大会、2003 年 10 月(口頭発表)