シリコン酸化膜中の電子の脱出深さの酸化プロセス依存性 Dependence of Electron Escape Depth in Silicon Oxide on Oxidation Process

東和文 ${ }^{1}$ ，藤田啓嗣 ${ }^{2}$ ，服部健雄 ${ }^{2}$ ，池永英司 ${ }^{3}$ ，野平博司 ${ }^{2}$ ，岡本英介 ${ }^{2}$ ，品川盛治 ${ }^{2}$ ，高田恭孝 ${ }^{4}$ ，吉田徹史 ${ }^{2}$

Kazufumi Azuma ${ }^{1}$ ，Hirotsugu FUJITA ${ }^{2}$ ，Takeo HATTORI ${ }^{2}$ ，Eiji IKENAGA ${ }^{3}$ ，Hiroshi NOHIRA ${ }^{2}$ ， Hideyuki OKAMOTO ${ }^{2}$ ，Seiji SHINAGAWA ${ }^{2}$ ，Yasutaka TAKATA ${ }^{4}$ ，Tetsushi YOSHIDA ${ }^{2}$
${ }^{1}$（森液晶先端技術開発センター，${ }^{2}$ 武蔵工業大学，
${ }^{3}$ 高輝度光科学研究センター，${ }^{4}$ 理化学研究所放射光物性研究室
${ }^{1}$ Advanced LCD Technologies Development Center Co．，Ltd．，${ }^{2}$ Musashi Institute of Technology，
${ }^{3}$ Soft X－ray Spectroscopy Lab．，Harima Inst．，RIKEN，${ }^{4}$ Japan Synchrotron Radiation Res．Inst．

3 種類の方法で生成した活性酸素原子を用いて $300^{\circ} \mathrm{C}$ において $\mathrm{Si}(111$ ）面上に形成した膜厚 1 nm以下の低温酸化膜中の電子の脱出深さを 1050 eV のフォトン励起 Si 2 p スペクトルの測定により決定し，1 Torr の乾燥酸素中 $900^{\circ} \mathrm{C}$ において形成した熱酸化膜のそれと比較した。 3 種類の低温酸化膜中の電子の脱出深さは，熱酸化膜中のそれよりも $15-20 \%$ 小さい。

We determined the electron escape depths in less than 1－nm－thick low－temperature oxide layers，which were formed on $\operatorname{Si}(111)$ using three kinds of atomic oxygen at $300^{\circ} \mathrm{C}$ ，by measuring Si 2 p photoelectron spectra at the photon energy of 1050 eV and compared with that in the thermal oxide layer formed in 1 Torr dry oxygen at $900^{\circ} \mathrm{C}$ ．It was found that the electron escape depths in three kinds of low－temperature oxide layers are 15 － 20% smaller than that in the thermal oxide layer．

液晶ディスプレイにおいて従来の $a-S i$ （アモルファスシリコン）TFT（薄膜トラン ジスタ）よりも飛躍的に画質を向上できる Poly－Si（多結晶シリコン）TFT を安価なガ ラス基板やプラスチック基板上に形成するた めには， $400^{\circ} \mathrm{C}$ 以下の低温において高品質の ゲート酸化膜／シリコン界面の形成法を確立 する必要がある。ゲート酸化膜／シリコン界

面構造は，酸化プロセス依存性に依存する膜厚約 1 nm の構造遷移層の化学結合状態と膜厚の均一性により主として決まる。また， SiO_{2} からなる構造遷移層中の電子の脱出深 さは，バルク SiO_{2} 中のそれとは異なるはず であるが，これまで明かにされてこなかった。酸化プロセス依存性に強く依存すると考えら れる膜厚約 1 nm の構造遷移層の電子の脱出

図1 $\mathrm{Kr} / \mathrm{O}_{2}$ プラズマ酸化膜についての光電子の脱出角をパラメータとして表示した 1050 eV のフ オトンで励起した Si 2p3／2光電子スペクトル

深さを明らかにしない限り，極薄シリコン酸化膜／シリコン界面構造のプロセス依存性を明らかにすることはできない。

今回，2．45 GHz のマイクロ波励起プラズ マおよび真空紫外光により生成した原子状酸素を用いて 3 種類のシリコンの低温酸化膜， すなわち，膜厚 0.70 nm のクリプトン希釈酸素ガスプラズマ $\left(\mathrm{Kr}: \mathrm{O}_{2}=97: 3\right)$ により形成し た酸化膜（以下， $\mathrm{Kr} / \mathrm{O}_{2}$ プラズマ酸化膜と呼 ぶ），膜厚 0.57 nm の酸素ガスプラズマによ り形成した酸化膜（以下， O_{2} プラズマ酸化膜と呼ぶ）および膜厚 0.66 nm の波長 172 nm の真空紫外光により形成した酸化膜（以下，光酸化膜と呼ぶ）を，いずれも（111）の面方位を有する Si のエピタキシャル層上に $300^{\circ} \mathrm{C}$ において形成した。また，参照試料と して膜厚 0.70 nm の高品質熱酸化膜をオフ角 0.01° の $\operatorname{Si}(111)$ 面上に乾燥酸素中 $900^{\circ} \mathrm{C}$ で形成した。これらの膜のシリコン酸化膜／ シリコン界面における組成遷移層の化学結合状態と膜厚の不均一性を明らかにするために， 1050 eV のフォトンで励起した Si 2 p 光電子 スペクトルと 714 eV で励起した O 1 s 光電子のエネルギー損失スペクトルをそれぞれ測

図2 3 種類の低温酸化膜および熱酸化膜につい てのスペクトル強度比NI／NO の光電子の脱出角 θ への依存性

定した。
図1に，Si $2 \mathrm{p}_{3 / 2}$ 光電子スペクトルの測定例として， $\mathrm{Kr} / \mathrm{O}_{2}$ プラズマ酸化膜のスペクト ルを示す。この図によれば，光電子の脱出角 の減少とともに，シリコン基板に由来する Si $2 p_{3 / 2}$ 光電子スペクトルが減少する。これ は，シリコン基板がシリコン酸化膜で覆われ ていることを意味している。また，図1に示 すように， $\mathrm{Si}^{1+}, \mathrm{Si}^{2+}$ および Si^{3+} から構成され るシリコンの中間酸化状態に由来する Si $2 \mathrm{p}_{3 / 2}$ スペクトル強度を NI， SiO_{2} に由来する Si $2 \mathrm{p}_{3 / 2}$ スペクトル強度をNOとすれば， 3種類の低温酸化膜についてのスペクトル強度比 NI／NO の光電子の脱出角 θ への依存性は，図 2 に示すようになる。それぞれの図には，熱酸化膜についてのスペクトル強度比 NI／NO の光電子の脱出角 θ への依存性を示 した。

中間酸化状態にあるシリコンの面密度 Ni は，シリコン基板に由来する Si $2 \mathrm{p}_{3 / 2}$ スペク

	$\mathrm{Kr} / \mathrm{O}_{2}$ プラズマ酸化膜	O_{2} プラズマ酸化膜	光酸化膜	熱酸化膜
$\Lambda_{0}(\mathrm{~nm})$	2.1	2.0	2.0	2.5

トル強度をNS とすれば，NI／NS の測定値， シリコン基板中のシリコンの原子密度 ns， シリコン基板中の電子の脱出深さ Λ_{s} ，光電子の脱出角 θ で表すことができる。この中間酸化状態にある Ni から放出される光電子数 は酸化膜中の非弾性散乱により減少する。そ の減少の程度は，光電子の脱出角 θ が小さく なるほど大きくなる。したがって，NI／NO の光電子の脱出角 θ への依存性から，酸化膜中の電子の脱出深さ Λ 。が決定できるはずで ある。この脱出深さ，酸化膜中のシリコン原子密度 n_{o} ，$n s, ~ \Lambda_{s, ~} \theta$ を用いて，シリコン酸化膜の膜厚 d が定義される。この d を用 いて，NI／NO の光電子の脱出角 θ への依存性から新たに酸化膜中の電子の脱出深さ Λ 。 を決定する。このような計算を，Λ 。と d が一定値に収斂するまで繰り返す。このように して決定した $\Lambda_{\text {。を表1に示す。この表によ }}$ れば， 3 種類の低温酸化膜中の電子の脱出深 さは，熱酸化膜中のそれよりも $15-20 \%$ 小さ い。これは，低温酸化膜と熱酸化膜の密度の違いを反映している。

参考文献

［1］R．Flitsch and S．I．Raider，J．Vac．Sci． Technol． 12 （1975） 305.
［2］Z．H．Lu，J．P．McCaffrey，B．Brar，G．D． Wilk，R．M．Wallance，L．C．Feldman，and S． P．Tay，Appl．Phys．Lett． 71 （1997） 2764.
［3］M．Goto，K．Azuma，T．Okamoto，and Y．

Nakata，Jpn．J．Appl．Phys． 42 （2003） 7033.
［4］K．Takahashi，H．Nohira，K．Hirose，and T． Hattori，Appl．Phys．Lett． 38 （2003） 3422.
［5］M．P．Seah and W．A．Dench，Surf． InterfaceAnal． 1 （1979） 2.
［6］Y．Sugita，S．Watanabe，N．Awaji and S． Komiya，Appl．Surf．Sci．100／101（1996） 268.
［7］C．Meyer，G．Lüpke，Z．G．Lü，A．Gölz，and G．Lucovsky，J．Vac．Sci．\＆Technol．B 14 （1996） 3107.
［8］L．J．Brillson，A．P．Young，B．D．White，and J．Schäfer，J．Vac．Sci．\＆Technol．B 18 （2000） 1737
［9］K．Takahashi，M．B．Seman，K．Hirose，and T． Hattori，Jpn．J．Appl．Phys． 41 （2002）L223．

