BGA はんだ接合部における熱疲労損傷の 3 次元構造解析

3－dimensional Microstructure Analysis of Thermal Fatigue Damage in BGA Solder Joints

佐山利彦 ${ }^{\mathrm{a}}$ ，上杉健太朗 ${ }^{\mathrm{b}}$ ，土 明 $^{\mathrm{c}}$ ，中野司 ${ }^{\mathrm{d}}$ ，安田秀幸 ${ }^{\mathrm{c}}$ ，釣谷浩之 ${ }^{\mathrm{a}}$ ，森孝男 ${ }^{\mathrm{e}}$ ，高柳毅 ${ }^{\mathrm{f}}$ Toshihiko Sayama ${ }^{\text {a }}$ ，Kentaro Uesugi ${ }^{\text {b }}$ ，Akira Tsuchiyama ${ }^{\text {c }}$ ，Tsukasa Nakano ${ }^{\text {d }}$ ，Hideyuki Yasuda ${ }^{\text {c }}$ ， Hiroyuki Tsuritani ${ }^{\text {a }}$ ，Takao Mori ${ }^{\text {e }}$ ，Takeshi Takayanagi ${ }^{\text {f }}$

${ }^{\mathrm{a}}$ 富山県工業技術センター，${ }^{\mathrm{b}}$ 高輝度光科学研究センター，${ }^{\mathrm{c}}$ 大阪大学，${ }^{\mathrm{d}}$ 産業技術総合研究所， ${ }^{\mathrm{e}}$ 富山県立大学，${ }^{\mathrm{f}}$ ーセルル株式会社
${ }^{a}$ Toyama Industrial Technology Center，${ }^{\mathrm{b}}$ SPring－8／JASRI，${ }^{\mathrm{c}}$ Osaka University，${ }^{\mathrm{d}}$ GSJ／AIST， ${ }^{\mathrm{e}}$ Toyama Prefectural University，${ }^{\mathrm{f}}$ Cosel Co．，Ltd．

BGA（Ball Grid Array）のはんだボール接合部を対象とし，高分解能 X 線 CT 装置（SP－$\mu \mathrm{CT}$ ）を用い て，熱疲労による微細組織の変化を解析した。その結果，熱サイクルの進行に伴い， Pb および Sn 各相の粗大化が急速に進行する様子を，明確に観察することができた。これは，実際の電子基板におけ るマイクロ接合部の寿命評価に，X 線 CT による非破壊検査を利用できる可能性を示すものである。

Microstructiral evolution caused by thermal fatigue in BGA（Ball Grid Array）solder joints was analyzed by using the micro X－ray CT system called SP－$\mu \mathrm{CT}$ at BL47XU．Consequently，the phase growth of eutectic structure in the $\mathrm{Sn}-37 \mathrm{wt} \% \mathrm{~Pb}$ solder joints was observed with high resolution．This result shows the possibility that nondestructive testing by micro CT system is useful for the lifetime evaluation of micro joints on PCBs （Printed Circuit Boards）．

背景と研究目的

LSI チップは，ナノテクノロジーによって製造されているが，その性能を十分に引き出 すための電子基板への高密度実装技術が，電子機器の開発にとって障害となっている。特 に重要な課題の一つは，$\mu \mathrm{m}$ オーダーの電気的•機械的接合部（以下，マイクロ接合部） における高信頼性技術であり，そのためのツ

ールとして，高分解能を有する非破壊検査技術の開発が急務となっている。

一方，われわれの研究グループでは，上杉 を中心として SPring－8において， $1 \mu \mathrm{~m}$ 程度の空間分解能を有するX線 CT 装置（SP－$\mu \mathrm{CT}$ ） の開発を進め ${ }^{1)}$ ，結晶成長組織の 3 次元構造解析 ${ }^{2)}$ などの研究を実施してきた。さらに，佐山らは，電子基板はんだ接合部において，

Fig． 1 Reconstructed images showing phase growth in an $\mathrm{Sn}-\mathrm{Pb}$ eutectic solder joint

熱サイクル負荷による微細組織の変化を観察 し，その熱疲労寿命を推定する手法を確立し ている ${ }^{3)}$ 。

本研究では，CPU などの実装に用いられて おり，典型的なマイクロ接合部である BGA （Ball Grid Array）のはんだボール接合部を対象とし，開発した X 線 CT 装置を用いて，熱疲労による微細組織の変化を解析した。本研究は，将来的に，放射光を利用した X 線 CT技術を電子基板の非破壊検査に適用すること を目指すものであり，エレクトロニクスのナ ノテクノロジー化を加速するために重要な意義がある。

実験

BGA 接合部を想定し，直径 $100 \mu \mathrm{~m}$ のはん だボール（Sn－37wt\％Pb 共晶）を鋼製のピン にリフロー接合した試験体を準備した。この試験体を用いて，熱サイクル試験を実施した。試験には，$-40^{\circ} \mathrm{C} \longleftrightarrow \rightarrow 125^{\circ} \mathrm{C}$ ，各 30 min 保持の温度プロファイルを用いた。任意のサイクル数において，BL47XU に設置されている X 線 CT 装置を用い，はんだボール内の微細組織 の変化を観察した。透過像一枚あたりのX線

の露光時間は 1 sec であり，試料を 180° 回転 させて 750 枚の透過像を撮影した。透過像の撮影領域は， $250 \mu \mathrm{~m} \times 250 \mu \mathrm{~m}$ であり， $0.5 \mu \mathrm{~m}$ $\times 0.5 \mu \mathrm{~m}$ のピクセルによって構成される。ま た， Pb 相と Sn 相とをコントラストを付けて表示するために，29．0keVの X 線エネルギを選択した。

結果および考察

図 1 は，熱サイクル試験を実施した同一試験体の同一断面における CT 画像の変化を示 す。なお，CT 画像は，試験体の回転軸と垂直な断面において再構成を行った。明るい部分および暗い部分は，各々 Pb 相および Sn 相 に対応している。共晶はんだをリフロー接合 した時に現れる不規則な形状を有する Pb 相 の分布が認められる。また，熱サイクルの進行に伴い，各相の凝集，粗大化が，急速に進行する様子も，明確に観察できる。各相にお ける平均相寸法の変化率は，はんだ内の疲労損傷量と対応することが明らかとなつている ${ }^{3}$ ）ので，CT 画像からマイクロ接合部の寿命評価が可能である。これは，実際の電子基板に おけるマイクロ接合部の寿命評価に，X 線 CT

Fig． 2 A 3－D image of the Pb phase in the joint

による非破壊検査を利用できる可能性を示し た点で重要な成果である。

さらに，図2は， Pb 相の分布を 3 次元イメ ージで示す。断面観察のみでは捕らえること ができなかった Pb 相のデンドライト構造が，明確に観察できる。マイクロ接合部を3次元 イメージで解析することで，疲労損傷の 3 次元分布などについて多くの知見を得ることが期待できる。

今後の課題

放射光を利用した高分解能の X 線 CT 技術 を，実際の電子基板構造に適用するための実験を計画したい。

参考文献

1）Uesugi，K．，et al．，Nucl．Instr．Method．，Sec．A， 467－468（2001），853－856．

2）安田秀幸・ほか，放射光， 16 （2003）， 21 。
3）Sayama，T．，et al．，Proc．of InterPACK＇03， ASME，（2003），IPACK2003－35096．

