酸化亜鉛中のナノサイズ遷移金属酸化物の軟 \mathbf{X} 線 MCD

Soft X－ray MCD of nano－sized transition metal oxides in zinc oxides

田中 功 ${ }^{a}$ ，池野 豪一 ${ }^{a}$ ，国須 正洋 ${ }^{a}$ ，須賀建夫 ${ }^{a}$ ，藤平 哲也 ${ }^{a}$中嶋 聖介 ${ }^{\mathrm{b}}$ ，藤田 晃司 ${ }^{\text {b }}$ Isao Tanaka ${ }^{\text {a }}$ ，Hidekazu Ikeno ${ }^{\text {a }}$ ，Masahiro Kunisu ${ }^{\text {a }}$ ，Takeo Suga ${ }^{\text {a }}$ ，Tetsuya Tohei ${ }^{\text {a }}$ Seisuke Nakashima ${ }^{\text {b }}$ ，Kouji Fujita ${ }^{\text {b }}$
${ }^{\text {a }}$ 京都大学大学院工学研究科材料工学専攻
${ }^{\mathrm{b}}$ 京都大学大学院工学研究科材料化学専攻
${ }^{\text {a }}$ Department of Materials Science and Engineering，Kyoto University
${ }^{\mathrm{b}}$ Department of Materials Chemistry，Kyoto University

パルスレーザー堆積（PLD）法で作製した $\mathrm{Zn}_{1-\mathrm{x}} \mathrm{Mn}_{\mathrm{x}} \mathrm{O}(\mathrm{x}=0.05)$ 薄膜に対し，SPring－8 の BL25SU にお いて，Mn－$L_{2,3}$ 端における X 線吸収端近傍微細構造（XANES）及びX線磁気円二色性（XMCD）の測定を行 った。得られた XANES について，強相関効果を精確に取り入れた第一原理計算結果と比較検討した結果， Mn は Zn 位置を置換していると結論された。 XMCD では， 42 K において微弱ながら有意なシ グナルが観測された。現在，この起源を追求している。

We have measured the $\mathrm{Mn}-L_{2,3}$ edge x－ray absorption near－edge structure（XANES）and x－ray magnetic circular dichroism（XMCD）on $\mathrm{Zn}_{1-\mathrm{x}} \mathrm{Mn}_{\mathrm{x}} \mathrm{O}(\mathrm{x}=0.05)$ thin film fabricated by pulsed laser deposition（PLD）．First principles calculations including multi－electron interactions have been conducted and the results are compared with experimental XANES．We can conclude that Mn atoms are located at substitutional sites of ZnO ． Preliminary XMCD experiments found non－negligible signal at 42 K ．The origin of the ferromagnetic interactions is now under investigation．

背景及び目的

非磁性半導体に磁性元素を添加した希薄磁性半導体は将来的なスピントロニクスデバ イスへの応用に大きな期待が寄せられてい る． $\mathrm{ZnO}: \mathrm{Mn}$ 系は，すでに多くの研究が行わ れている系のひとつであり，最近室温での強磁性が報告されたが ${ }^{(1)}$ ，まだその発現のメカ

ニズムに定まった議論がない。
既往の研究の多くは磁化測定から磁性を議論する事に終始し，磁性を理解する上で必要な磁性元素の存在形態や周囲の局所環境 といった基本的な情報についての評価が殆 どなされていない。
本研究は，注目元素のスピン状態や価数，

配位数といった局所環境を敏感に反映する X 線吸収端近傍微細構造（X－ray Absorption Near－Edge Structure；XANES），及び注目元素 の磁気状態を反映する磁気円二色性（X－ray Magnetic Circular Dichroism；XMCD）の測定 と，第一原理計算と組み合わせることによ り， ZnO 中の遷移金属元素周辺の局所構造 と磁気特性との関連について調べることを目的としている。

実験条件

試料には，KrF エキシマレーザーを用いた パルスレーザー堆積（PLD）法により作製した $\mathrm{Zn}_{1-\mathrm{x}} \mathrm{Mn}_{\mathrm{x}} \mathrm{O}$ 薄膜を用いた。測定に際して薄膜 の表面の改質や帯電を防ぐため，成膜直後に真空槽内で Au を約 1 nm 厚に蒸着した。得ら れた薄膜を X 線回折で評価したところ，ウル ツ鉱型構造であり，基板に垂直な面に c 軸配向していることが分かった。

XANES 及び XMCD の測定は SPring－8 の BL25SUにて行った。単色化された放射光を試料に垂直に入射し，XANESを得た。また， XMCD は単色化された左右円偏光を，1．4T磁場下の薄膜試料に入射し，両者のスペクトル の差から求めた。試料は He クライオスタッ トにより 42 K まで冷却した。

結果

Fig． 1 に $\mathrm{Zn}_{1-\mathrm{x}} \mathrm{Mn}_{\mathrm{x}} \mathrm{O}$ 薄膜から得られた Mn－$L_{2,3}$ 端 XANES を示す。これは以前にHan らが報告した常磁性を示す $\mathrm{Zn}_{1-\mathrm{x}} \mathrm{Mn}_{\mathrm{x}} \mathrm{O}$ （ $\mathrm{x}=0.05$ ）粉末から得られたスペクトル ${ }^{(2)}$ と良 く一致している。本研究では実験と平行して，多電子間の相互作用を精確に取り入れた第一原理計算を行っている。理論スペクトルとの

Fig． $1 \mathrm{Mn} L_{2,3}$ edge XANES spectrum of $\mathrm{Zn}_{1-\mathrm{x}} \mathrm{Mn}_{\mathrm{x}} \mathrm{O}$ thin film with $\mathrm{x}=0.05$ ．

比較検討の結果，この XANES を与える Mn は，Zn サイトに置換固溶していると結論でき た。また今回の測定において，微弱ではある が，有意な XMCD スペクトルが得られた。こ の起源については現在検討中である。

今後の諫題

実験条件を最適化して，信頼性の高いデー夕を得るとともに，試料中のナノ構造に起因 するスペクトル変化について実験的に追求す る。これと同時に， Mn 周辺の局所環境や強磁性相互作用の起源を特定するために，第一原理計算を用いた解析を進める予定である。

参考文献

（1）P．Sharma et al．，Nat．Mater．， 2673 （2003）．
（2）S－J．Han et al．，Appl．Phys．Lett．， 83920 （2003）

論文発表状況•特許状況

（1）池野豪一，国須正洋，山本知之，田中功，：日本金属学会 2004 年秋季大会，（口頭発表予定）

キーワード

－PLD（Pulsed Laser Deposition）法
高エネルギー密度のパルス状のレーザー をターゲットに照射することにより，放出さ れた原子・イオン・分子を基板上に堆積させ薄膜を作製する手法。近年，酸化物半導体薄膜の研究に広く利用されている。
－第一原理計算
実験から得られるパラメータなどを一切用いず，量子力学の原理にのみ基づいて，物質中の電子状態を記述する波動関数を計算す るための手法．通常は，平均場近似（一電子近似）と呼ばれる近似のもとで計算するが，本研究の対象系では， $3 d$ 電子が空間的に局在 する結果，この近似が成り立たない。したが つて新たに開発したプログラムで $3 d$ 電子間 の相互作用を精確に計算している。

