エピタキシャル鉄－チタン酸化物薄膜の電子構造解析

Electronic structures of epitaxial iron－titanium oxide thin films

藤井 達生 ${ }^{\mathrm{a}}$ ，高田 裕輔 ${ }^{\mathrm{a}}$ ，山下 美樹 ${ }^{\mathrm{a}}$ ，渡辺 泰成 ${ }^{\mathrm{a}}$ ，為保 伸成 ${ }^{\mathrm{a}}$ ， ブライクアウレルミイ ${ }^{\mathrm{b}}$ ，木村昌弘 ${ }^{\mathrm{b}}$ ，吉川英樹 ${ }^{\mathrm{b}}$ ，福島 整 ${ }^{\mathrm{b}}$
T．FUJII ${ }^{a}$ ，Y．TAKADA ${ }^{\text {a }}$ ，M．YAMASHITA ${ }^{a}$ ，Y．WATANABE ${ }^{\mathrm{a}}$ ，N．TAMEYASU ${ }^{\text {a }}$ ， A．M．Vlaicu ${ }^{\text {b }}$, M．KIMURA $^{\text {b }}$ ，H．YOSHIKAWA ${ }^{\text {b }}$ ，and S．FUKUSHIMA ${ }^{\text {b }}$
${ }^{a}$ 岡山大学工学部，${ }^{\text {b }}$ 物質•材料研究機構
${ }^{a}$ Faculty of Engineering，Okayama University，${ }^{\text {b }}$ National Institute of Material Science

サファイア単結晶基板上に成長した FeTiO_{3+8} 薄膜は，エピタキシヤル安定化により幅広い酸素量の不定比性を示す。そこで， FeTiO_{3+8} 薄膜中に含まれる Fe 及び Ti イオンの構造と電子状態を明らかに する目的で，薄膜の XPS 及び XANES 測定を実施した。その結果，酸素量の増加とともに Feイオン の価数が Fe^{2+} から Fe^{3+} に変化し，同時に， Ti イオン周辺の局所構造が大きく変化することが判った。
$\mathrm{FeTiO}_{3+\delta}$ thin films prepared on $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ single－crystalline substrates had large formation range of oxygen nonstoichiometry due to their epitaxial stabilization．We measured XPS and XANES spectra of $\mathrm{FeTiO}_{3+\delta}$ films to examine the structure and electronic states of both Fe and Ti ions in $\mathrm{FeTiO}_{3+\delta}$ ．With increasing the oxygen content in $\mathrm{FeTiO}_{3+\delta}$ ，the ionic states of Fe ions changed form Fe^{2+} to Fe^{3+} and it affected the local states of Ti ions seriously．

緒言

スピン偏極した伝導電子を持つ磁性半導体は， スピンエレクトロニクスを担う次世代電子材料 として非常に注目されており，常温で高いスピ ン偏極を示す新たな磁性半導体が求められてい る。 $\alpha-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{FeTiO}_{3}$ 系固溶体は，その両端組成 $の \alpha-\mathrm{Fe}_{2} \mathrm{O}_{3}$ と FeTiO_{3} が反強磁性絶縁体であるに もかかわらず，中央組成近傍では強いフェリ磁性伝導体であることが知られており ${ }^{1,2)}$ ，近年の クラスタ分子軌道計算によると，本系固溶体は室温以上の高いキュリー温度を持つ新規な磁性

半導体となることが予想されている ${ }^{3)}$ 。しかも， Fe及び Ti はいずれも環境にやさしい無害な元素 であることから，環境調和型の機能性材料とし ての展開も期待されている。

そこで我々は，新しい磁性半導体として期待 されるフェリ磁性 $\alpha-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{FeTiO}_{3}$ 固溶体薄膜の作製を試み，その薄膜化に初めて成功した ${ }^{4,5)}$ 。 しかし，得られた薄膜は成膜時の酸素分圧条件 に依存してその酸素量に大きな不定比性を示し，薄膜の構造や物性は大きく変化した。このよう な不定比性の出現は，薄膜に特徴的な現象であ

り，酸素量の不定比領域が単結晶基板上でエピ タキシャル安定化されたものと考えられる ${ }^{5)}$ 。そ こで本研究では，酸素量の不定比性の影響が最 も顕著に現われると予想される $\mathrm{FeTiO}_{3+\delta}$ 組成（ $0<$ $\delta<0.5)$ の薄膜に注目し，その不定比性が薄膜の構造や電子状態に及ぼす影響を，主としてX線光電子分光法（XPS）ならびに X 線吸収端微細構造分光（XANES）により検討したので報告する。

実験

XPS ならびに XANES 測定は，SPring－8 のビー ムラインBL－15XU に設置の大型角度分解X線光電子分光装置（DAPHNIA）により実施した。試料 は反応性ヘリコンスパッタ法により $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ （001）単結晶基板上に作製したほぼ定比組成のエ ピタキシャル FeTiO_{3} 薄膜と，より酸化雰囲気で作製した $\mathrm{FeTiO}_{3.5}$ 薄膜の 2 種類である。測定に使用した入射 X 線は，アンジュレーター挿入光源 から放射される準単色 X 線を Si（111）二結晶分光器により高精度に単色化（ $\Delta \mathrm{E} / \mathrm{E}=\sim 10^{-4}$ ）したもの であり，XPS 測定における入射 X 線エネルギー は 4750 eV とした。高エネルギー励起による XPS測定は，光電子の運動エネルギーが大きく平均脱出深度が大きいため，試料表面の状態に影響 されないバルク敏感なスペクトルを得ることが可能である。そのため XPS 測定に際しては，試料の構造や組成が変質する可能性が高いスパッ タクリーニング等の表面清浄化操作は実施しな かつた。また，いずれの試料についても帯電の影響は非常に小さく，中和銃は使用していない。 そして，吸着カーボンのピーク（C $1 \mathrm{~s}=284.6 \mathrm{eV})$ を基準として結合エネルギーの補正を行なった。

一方，XANES 測定は Ti K 吸収端近傍の 4960 ～4990 eV の範囲で 0.2 eV 刻みで入射 X 線エネ ルギーを変化させ，試料電流の変化を測定する

全電子収量法により測定した。

結果および考察

FeTiO_{3} および $\mathrm{FeTiO}_{3.5}$ の各薄膜について，価電子帯近傍の XPS スペクトルを図 1 に示す。 FeTiO_{3}薄膜のXPS スペクトルには，フェルミ準位の極近傍に小さなピークが出現している。しかし， そのピークは $\mathrm{FeTiO}_{3.5}$ 薄膜では消失しており，フ エルミ準位近傍の状態密度が酸素量により大き く影響されることがわかつた。また，薄膜が FeTiO_{3} から $\mathrm{FeTiO}_{3.5}$ へ酸化されるとともに， Fe イオンの内殻準位の結合エネルギーは増加し， Feの化学状態が Fe^{2+} から Fe^{3+} へと変化すること も明らかとなった。この結果はメスバウアース ペクトルの結果とも一致している。一方，Ti イ オンの内殻準位のスペクトルは FeTiO_{3} と $\mathrm{FeTiO}_{3.5}$ でほぼ等しく， Ti イオンの化学状態が両者でほとんど変化していないことがわかった。

そこで薄膜の酸化に伴なう Ti イオンの状態変化をより詳しく検討するため，各薄膜の Ti K 吸収端の XANES スペクトルを測定したので，その結果を図 2 に示す。 Tiイオンの内殻準位の XPS スペクトルにほとんど変化が無かったにもかか わらず，Ti K 吸収端の XANES スペクトルは2 つの試料の間で非常に大きな変化を示した。

XANES スペクトルの形状は， Ti イオンの分子軌道，すなわち配位環境に大きく影響されること が知られている。よって， $\mathrm{FeTiO}_{3.5}$ 薄膜中の Ti イオンは，結晶構造中に導入された格子欠損等 により FeTiO_{3} ．とは異なる配位環境にあることが示唆される。くわえて $\mathrm{FeTiO}_{3.5}$ 薄膜の XANES ス ペクトルは，文献で報告された TiO_{2} 結晶のそれ に近づいており ${ }^{6)}$ ，エピタキシャル安定化された $\mathrm{FeTiO}_{3.5}$ 薄膜中の Ti イオンは，熱力学的により安定な $\mathrm{Fe}_{2} \mathrm{O}_{3}$ と TiO_{2} の 2 相に分離する方向で，

Fig．1．XPS valence band spectra of stoichiometric FeTiO_{3} and oxidized $\mathrm{FeTiO}_{3.5}$ films

結晶粒界等に析出している可能性も否定できな い。

今後の課題

$\mathrm{FeTiO}_{3.5}$ 薄膜中における Ti イオンの存在状態 を判断するためには，薄膜の精密な結晶構造と イオン分布を知ることが必要である。よって，X線回折法や電子顕微鏡観察による薄膜の構造解析を実施し，X 線分光分析の結果と総合するこ とで $\mathrm{FeTiO}_{3.5}$ 薄膜の構造と電子状態をより明確 なものとし，$\alpha-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{FeTiO}_{3}$ 固溶体薄膜の磁性半導体特性の改善につなげたい。

参考文献

1）Y．Ishikawa，J．Phys．Soc．Jpn． 17 （1962）， 1835.
2）Y．Ishikawa，J．Phys．Soc．Jpn． 13 （1958）， 37.
3）W．H．Butler，et al．，J．Appl．Phys． 93 （2003）， 7882.

4）T．Fujii，et al．，J．Magn．Soc．Jpn． 22 S1（1998）， 206.

5）T．Fujii，et al．，J．Magn．Magn．Mat．272－276 （2004）， 2010.

6）F．J．Berry，et al．，Mod．Phys．Lett．B 12 （1998）， 413.

Fig．2．Ti K－edge XANES spectra of stoichiometric FeTiO_{3} and oxidized $\mathrm{FeTiO}_{3.5}$ films．

発表論文

［1］T．Fujii，Y．Takada，M．Nakanishi，J．Takada，9th International Conference on Ferrites，August 2004.
［2］高田裕輔，中西真，藤井達生，高田潤，粉体粉末冶金協会2004年秋季大会（発表予定）。

キーワード

－磁性半導体
伝導電子のスピンが一方向に偏極している半導体であり，電子の持つスピンと電荷の二つの自由度の相乗効果を利用した新しいデバイス材料への応用が期待されている。
－エピタキシャル安定化
天然には安定に存在しない組成や構造をもつ た化合物が，それとほぼ同一の結晶構造をもつ た単結晶基板上に規則的に結晶方位をそろえて成長することで界面エネルギーを低下させ，単結晶状薄膜として安定に存在するようになるこ と。

