縞状磁区構造を有する超高密度磁気記録材料 CoNiFe 合金系軟磁性膜の軟 \mathbf{X} 線磁気円 2 色性の研究

 Soft X－ray Magnetic Circular Dichroism Study of CoNiFe Alloy Soft

 Soft X－ray Magnetic Circular Dichroism Study of CoNiFe Alloy Soft Magnetic Films with a Stripe Magnetic Domain Structure Used for Magnetic Films with a Stripe Magnetic Domain Structure Used for Ultra High Magnetic Recording Materials．

 Ultra High Magnetic Recording Materials．}

朝日透 ${ }^{a}$ ，逢坂哲彌 ${ }^{a}$ ，横島時彦 ${ }^{a}$ ，川治純 ${ }^{a}$ ，佐山淳一 ${ }^{a}$ ，田中真人 ${ }^{a}$ ，中村尚倫 ${ }^{\mathrm{a}}$ ，安居院あかね ${ }^{\mathrm{b}}$ ，水牧仁一朗 ${ }^{\mathrm{c}}$ 。
Toru Asahi ${ }^{\text {a }}$ ，Tetsuya Osaka ${ }^{a}$ ，Tokihiko Yokoshima ${ }^{\text {b }}$ ，Jun Kawaji ${ }^{\text {a }}$ ，Jun－ichi Sayama ${ }^{a}$ ，Hideki Hashimoto ${ }^{a}$ ， Mutsumi Tanaka ${ }^{a}$ ，Masahito Tanaka ${ }^{a}$ ，Naomichi Nakamura ${ }^{a}$ ，Akane Agui ${ }^{\text {c }}$ ，Masaichiro Mizumaki ${ }^{\text {d }}$

$$
\begin{array}{cl}
{ }^{\mathrm{a}} \text { 早稲田大学, }, \quad{ }^{\mathrm{b}} \text { 日本原子力研究所, }{ }^{\mathrm{c}} \text { 高輝度光科学研究センター } \\
& { }^{\mathrm{a}} \text { Waseda University, }{ }^{\mathrm{b}} \text { JAERI, }{ }^{\mathrm{c}} \text { JASRI }
\end{array}
$$

超高密度磁気記録に有望な垂直二層膜磁気記録媒体の開発には，高飽和磁束密度を有する軟磁性薄膜から成る裏打ち層と呼ばれる磁性薄膜の研究が鍵となっている。本研究では裏打ち層として CoNiFeB 無電解めっき膜を用い，SPring－8 BL23SU の偏光変調方式による軟X 線磁気円二色性の測定 から，この裏打ち層の元素別磁気特性を明らかにした。また作製時に磁場を印加しためっき膜では $\mathrm{Co}, ~ \mathrm{Ni}$ 原子の軌道角運動量が増加することを明らかにした。

Soft magnetic films are known to be a key layer for the development of a perpendicular magnetic recording medium which is indispensable for high－density magnetic recording．In this work，we investigated magnetic properties of each consistent atom in CoNiFeB electroless－deposited soft magnetic films by soft X－ray magnetic circular dichroism measurement at SPring－8 BL23SU．We concluded that the $3 d$ orbital magnetic momentum of Co and Ni atoms in the CoNiFeB film increased by applying an external magnetic field to the sample during the electroless deposition．

研究背景

面記録密度 $200 \mathrm{Gbit} / \mathrm{inch}^{2}$ 以上の超高密度磁気記録の実現には垂直2層膜垂直磁気記録媒体の開発が不可欠である。垂直二層膜媒体は高磁気異方性を有する垂直磁化膜と高飽和磁

束密度を有する軟磁性薄膜から構成される。 その軟磁性薄膜は裏打ち層と呼ばれ，記録時 に磁気ヘッドと磁気回路を構成し，垂直磁気記録膜に印加される磁場強度を高め，記録分解能を高める役割を担う重要な磁性膜である。

現在，様々な方法でこの軟磁性裏打ち層の作製と磁気特性評価が行われているが，構成元素毎にその磁気特性と評価した研究はなされ ていない。一方，我々は無電解めつき法によ る CoNiFe 合金系の裏打ち層 ${ }^{1)}$ 作製時に様々 な条件（回転速度，磁場の印加）によって，そ の磁気特性や磁化状態が変化し，とくに顕著 な磁気ドメイン壁の有無が変化することを明 らかにしている ${ }^{2), 3)}$ 。裏打ち層の磁気ドメイ ン壁は磁気記録時のノイズの大きな原因とな るので，それらを抑制する基礎的および実用的研究が精力的に展開されている。しかしな がら，何故めっき条件によってそのドメイン磁区構造の発現の有無が変わるのかは未だ理解されていない。また，裏打ち層に含まれる磁性原子が磁化発現に関して如何なる役割を果たしているのかも，よくわかっていないの が現状である。

そこで，本研究では偏光反転法を用いた高感度軟 X 線磁気円二色性（MCD）の測定から，構成元素ごとの磁気特性のめつき条件による変化を明らかにすることを目的とした。

実験方法

軟磁性裏打ち層として CoNiFeB 薄膜を無電解めつき法でディスク状シリコンウェハ基板上に作製した。詳細な作製条件は引用文献 ${ }^{3)}$ を参考されたい。めつき時に基板を約 40 rpm で回転させ，また基板に平行に磁化を印加（約 600 Oe ）させた膜と，印加させない膜を作製した。 2 次元 Kerr 効果の測定から，磁場印加試料には明瞭なドメイン磁区構造が見ら れたが，磁場を印加しなかった試料にはみら れなかつた。

円偏光反転軟 X 線磁気円二色性の測定は

SPring－8 BL23SU にて，ドレイン電流法を用 いて測定した。このとき試料の面内で円周方向に磁場を印加（約 300 Oe ）させ，また入射光 と磁場の印加方向の角度が 45 度になるよう に試料を配置した。測定はすべて室温で行っ た。

実験結果と考察

磁場を印加しない試料の測定した Fe, Co ， Ni 元素ごとの X 線吸収スペクトル（XAS）と MCD （強度を 5 倍した）を Fig． 1 に示す。ここ でそれぞれのピークは主に $2 \mathrm{p} \rightarrow 3 \mathrm{~d}$ 遷移によ るものである。Fe では $2 \mathrm{p}_{3 / 2}$ 端， $2 \mathrm{p}_{1 / 2}$ 端とも にXASピークが 2 つ観測されている。それぞ れ低エネルギー側が純鉄，高エネルギー側が酸化鉄によるものに対応していると考えられ る。MCD は低エネルギー側の吸収端のみにみ られている。Co，Ni ではこのような酸化物に よるピークは Fe ほど顕著には見られなかっ た。

次にこれら XAS，MCDから $2 \mathrm{p} \rightarrow 3 \mathrm{~d}$ 遷移に よるものだけを抽出して，磁気光学総和則よ り，軌道角運動量（ $<L_{z}>$ ）ならびにスピン角運動量（ $\left\langle S_{z}>\right.$ ）を算出した ${ }^{4)}$ 。このとき，FeはXAS から純鉄のみの吸収強度を算出するのが困難 であったため，MCDのみから算出可能な $<L_{z}>/<S_{z}>$ を算出した。

ここで，$<L_{z}>$ と $<S_{z}>$ は軌道磁気モーメント μ_{l}^{z} およびスピン磁気モーメント μ_{s} と以下の関係がある。

$$
\begin{aligned}
& \mu_{l}^{z}=-\mu_{B}\left\langle L_{z}\right\rangle n_{H} / \eta \\
& \mu_{s}=-2 \mu_{B}\left\langle L_{s}\right\rangle n_{H} / \eta
\end{aligned}
$$

n_{H} は各元素の3d電子軌道の正孔数，η は プランク定数である。今回の試料における n_{H} の正確な計算は今後の課題である。磁場印加

Fig．1．Examples of XAS（solid line）and MCD（dotted line）spectra of CoNiFeB soft magnetic film prepared without magnetic field at Fe, Co and Ni $2 p_{1 / 2,3 / 2}$ edges．MCD intensity data were exaggerated to be 5 times as much as the original ones．

Table 1．Values of $\left\langle L_{z}\right\rangle,\left\langle S_{z}\right\rangle$ and $\left.\left\langle L_{z}\right\rangle /<S_{z}\right\rangle$ of CoNiFeB films，where ON and OFF in H column mean whether the films was prepared with magnetic field or not，respectively．

Atom	H	$\langle L z\rangle$	$\langle S z\rangle$	$\langle L z\rangle /\langle S z\rangle$
Co	ON	0.080	0.205	0.388
	OFF	0.053	0.199	0.268
Ni	ON	0.092	0.198	0.466
	OFF	0.069	0.201	0.340
Fe	ON	-	-	0.130
	OFF	-	-	0.194

有無の試料の各運動量を Table 1 にまとめる。
この結果より，試料作製時に磁場を印加し
た試料，すなわち明確なドメイン壁をもつ試料は印加しないものと比較して Coと Ni 元素

の $<S_{z}>$ はほぼ同じだが，$<L_{z}>$ が増加すること がわかった。また Fe では $<L_{z}>/<S_{z}>$ は逆に磁場印加によって減少することがわかった。

今後の課題

現在までの結果から，めつき膜作成時にお ける磁場印加によって，軌道磁気モーメント に変化が生じることがわかった。しかし，こ れが磁場印加だけによるものか，もしくは付随する磁区構造に起因するものかは不明であ る。磁場を印加しても縞状磁区構造のない試料の作製も可能であるため，それらとの比較 によって，軌道磁気モーメントの変化の原因 を明らかにしたい。また酸化状態を抑制した試料作製を行うことで，Feの磁気モーメント の変化も測定する実験を計画している。

参考文献

1）T．Osaka et al．，Nature，392（1998）396．
2）T．Osaka，T．Yokoshima and T．Nakanishi，IEEE Trans．Magn．，37（2001）1761．

3）T．Yokoshima et al．，J．Electroanal．Chem．， 491（2000） 197.

4）C．T．Chen et al．，Chem．Phys．Lett．，75（1995） 152.

論文発表状況•特許状況

なし

キーワード
－垂直 2 層膜媒体
記録層である垂直磁化膜，中間層，裏打
ち層，シード層などから成る磁気記録媒体。以下に示す層構造を示す。

保護層：炭素スパッタ膜など
垂直磁気記録層： $\mathrm{Co} / \mathrm{Pd}$ 多層膜， TbFeCo ア
モルファス膜など
中間層：非磁性膜，Pd 金属膜や Si アモル
ファス膜など
軟磁性裏打ち層：CoFeNi 合金膜，CoZrNb
アモルファス膜など
シード層：非磁性膜， Ti 金属膜， Cr 金属膜
など
基板：Si 単結晶，結晶化ガラスなど

