内殼電子励起による $\mathbf{S b - T e}$ 系合金薄膜の構造改質

Strucure change of $\mathbf{S b - T e}$ alloy film by inner－shell excitation

谷 克彦 ${ }^{a)}$ ，三浦 裕司 ${ }^{a)}$ ，志賀 敢 ${ }^{a)}$ ，岩田 周行 ${ }^{a)}$ ，吉川 英樹 ${ }^{\text {b）}}$ ，安福 秀幸 ${ }^{\text {b）}}$ ，VLAICU A Mihai ${ }^{\text {b）}}$ Katsuhiko Tani ${ }^{\text {a）}}$ ，Hiroshi Miura ${ }^{\text {a）}}$ ，Tsuyoshi Shiga ${ }^{\text {a）}}$ ，Noriyuki Iwata ${ }^{\text {a）}}$ ， Hideki Yoshikawa ${ }^{\text {b）}}$ ，Hideyuki Yasufuku ${ }^{\text {b）}}$ ，and VLAICU Aurel Mihai ${ }^{\text {b）}}$
a）
（株）リコー中央研究所，${ }^{\text {b）}}$ 物質•材料研究機構，播磨オフィス
${ }^{\text {a）}}$ Ricoh R\＆D center and ${ }^{\text {b）}}$ Harima office，NIMS

相変化光記録ディスク記録層の基本材料 AIST（ $\mathrm{Ag}_{5} \mathrm{In}_{5} \mathrm{Sb}_{80} \mathrm{Te}_{10}$ ），ST（ $\mathrm{Sb}_{75} \mathrm{Te}_{25}$ ）のシート抵抗値の測定を行い，アモルファス膜は $1 \sim 4 \mathrm{M} \Omega /$ ■と非常に大きいが，結晶膜は $40 \sim 57 \Omega /$ とと金属的である結果を得た。この合金膜に， Sb の L 殻電子励起が起こる 4200 eV の X 線光子の照射を行い，光構造変化を調べた。アモルファス膜，結晶膜ともに， 4200 eV の X 線光子照射により，有意なシート抵抗値の変化は観測出来なかった。アモルファス膜のシート抵抗値は，X 線光子照射で減少傾向にあ るが，測定電流による熱的なアニーリングが結晶化を促進したためで，純粋な光励起によるもので はないと考える。

Sheet resistiviy of Sb－Te alloy filmes was measured．The sheet resistivity for the amorphous film is $1 \sim$ $4 \mathrm{M} \Omega / \square$ and this is quite large compared with that of the crystalline one $40 \sim 57 \Omega / \square$ ．There is no clear change of resistivitiy in both the crystalline and amorphous films after irradiation of the monochromatized x－ray $(4200 \mathrm{eV})$ at the absorption L－edge of Sb ．Sheet resistivity slightly reduces in the amorphous film after irradiation，however，we consider this is not caused by pure inner shell excitation．

背景と研究目的

これまでの PEEM による相変化光記録 ディスクの観察から，X 線光子照射により $\mathrm{Sb}-\mathrm{Te}$ 系合金薄膜の電子状態に変化があるこ とが見出された。これが内殻電子励起に起因 するものであるか調べるために，まず，Sb の L 殻電子励起の実験を行う。

実験

（1）照射
相変化光記録ディスクの記録層を構成す る基本材料2種：AIST（Ag． $\operatorname{In}_{5} \mathrm{Sb}_{80} \mathrm{Te}_{10}$ ）と ST （ $\mathrm{Sb}_{75} \mathrm{Te}_{25}$ ）について，それぞれのアモル ファス膜（アズデポ膜）と結晶膜（半導体 レーザー光走査（ $800 \mathrm{~mW}, ~ 3 \mathrm{~m} / \mathrm{s}$ ）により形成）に， Sb の L 吸収バンドの放射光 X 線
（4200eV）を照射し，L 殻電子励起により構造変化が生じるか否か実験した。

BL15XU，Daphniaを使用し，分光後の光子密度は， $10{ }^{11}$［photons $/ \mathrm{sec}$ ］のオーダーであ る。照射時間は，20，40，80，160 分の 4 水準とした。X 線光子照射の角度は，試料面に対し 60° ，アナライザーの取り出し角度は照射光に対し 55° とし，照射時は，Sb3d の XPS スペクトルの変化をモニターしている。 アモルファス膜，結晶膜のどちらも，X 線光子照射による Sb の XPS 3d スペクトルに変化は見られない。代表的な Sb 3 d のスペク トルを，Fig． 1 に示す。各ピークに見られる スペクトルの分裂は， Sb の金属結合と酸化 に対応している。（Fig．1）

（2）オフライン評価

X 線光子照射前後の試料のシート抵抗値は， オフラインで測定した。照射域が 1 mm オー ダーの微小サイズであるため，その部位の表

面抵抗値の測定には 0.1 mm ピッチの微小 4端子プローブ ${ }^{1), 2)}$ を使用した。測定時に流す電流は 0.005 mA 程度である。しかし，この程度の電流でも，アモルファスでは，測定し ていると徐々に低抵抗へと抵抗値がドリフト し，最後は断線する。これはアモルファスの シート抵抗が高いため，電流加熱によるア ニーリングが起こり，結晶化が促進されるた めと考えられる。（Table1）

照射後の結晶膜は，膜の表面性が悪いた め信頼できるシート抵抗値が得られなかった。

結果，および，考察

これらの材料の表面抵抗は， $1 \sim 4 \mathrm{M} \Omega / \square$ （アモルファス），40 から 57M』／ロ（結晶）程度である。

Sb の L 殻電子励起では，先に，紫外光照射で見出したアモルファス膜の構造変化およ びシート抵抗の変化は起こらなかった。しか し，電流のアニーリング効果と思われる低抵

Fig．1．Sb 3d XPS spectra of AIST．Spectra do not change during the irradiation．

Table1．Sheet resistivity of the $\mathrm{Sb}-\mathrm{Te}$ alloy films．

$/ \square$	AIST		ST	
	Crystalline	Amorphous	Crystalline	Amorphous
Before	$57(\pm 2) \Omega / \square$	$4.0(\pm 0.6) \mathrm{M} \Omega / \square$	$44(\pm 1) \Omega / \square$	$1.5(\pm 0.1) \mathrm{M} \Omega / \square$
After	$---\Omega / \square$	$3.6(\pm 0.6) \mathrm{M} \Omega / \square$	$---\Omega / \square$	$1.4(\pm 0.2) \mathrm{M} \Omega / \square$

抗化の傾向が見られた。結晶化促進のためと考えられる。

今後の方向

今回，考察に用いることのできたシート抵抗値のサンプリング点は，各試料 $2 \sim 8$ 点程度であった。このため標準偏差が大きく，精度を高める必要がある。

特に結晶膜（ポリカ基板上の厚さが 16 nm程度の膜。半導体レーザー光走査で形成）で は，X 線光子照射後の膜の連続性が悪く，

シート抵抗値の測定ができなかった。状態の よい試料で測定を行う必要がある。

紫外光照射でのアモルファス相の構造変化を継続検討する。

参考文献

1）Y．Sato et al．；Development of fine－pitchfour－ point probe for high spatial resolutionsheet resistance；Journal of surface analysis，Vol．11， No． 2 （2004）58－61

2）http：／／www．keytech．ntt－at．co．jp／material／

謝辞

微小 4 端子プローブの測定では，佐藤芳之博士（NTT－AT）にご協力頂いた。ここに深謝する。

キーワード

－内殻電子励起
本実験では，Sb L 殻電子の結合エネル ギーに合わせ 4200 eV の X 線光子を照射した。
－微小 4 端子プローブ
プローブ（ WC， $0.05 \mathrm{~mm} \phi)$ を 0.1 mm
ピッチで 4 本並べる。両端のプローブ間に，
微小直流電流を流し，中間の2プローブ間の

