X 線共鳴散乱法によるIII－V 族化合物半導体のナノ周期構造の評価

Investigation of the nano－structure of III－V semiconductor compounds by means of x－ray resonant scattering method

宮川勇人 ${ }^{1}$ ，藤井健輔 ${ }^{1}$ ，高尾勝大 ${ }^{1}$ ，小柴俊 ${ }^{1}$水牧仁一朗 ${ }^{2}$ ，坂田修身 ${ }^{2}$ ，北野彰子 ${ }^{2}$ ，木村滋 ${ }^{2}$
Hayato Miyagawa ${ }^{1}$ ，Kensuke Fujii ${ }^{1}$ ，Katsuhiro Takao ${ }^{1}$ ，Shun Koshiba ${ }^{1}$
Masaichiro Mizumaki ${ }^{2}$ ，Osami Sakata ${ }^{2}$ ，Akiko Kitano ${ }^{2}$ ，Shigeru Kimura ${ }^{2}$
> ${ }^{1}$ 香川大学，${ }^{2}$ 高輝度光科学研究センター
> ${ }^{1}$ Kagawa University，${ }^{2}$ JASRI

$\mathrm{AlAs} n / \mathrm{GaAsm}$ 半導体超格子（設計膜圧比 $\mathrm{n}: \mathrm{m}=3: 7$ ）の周期性，界面構造，組成の定量評価を目的とし，非共鳴／共鳴散乱実験を行った。設計周期 10ML，1．7ML の試料において，逆格子空間内の（00L）プロ ファイルに周期性を示すサテライトピークを観測し，ピーク位置より周期 9．85ML，1．69ML を導出し た。基板と超格子部分のピーク位置の相違から格子定数比を導出し，AlAs のポアソン比を用いるこ とで膜圧比 AlAs：GaAs＝0．28：0．72 を算出した。 Ga 吸収端において基板ピーク強度は大きな減少を示す一方超格子構造からのピーク強度の減少は比較的穏やかであった。この強度変化の違いは，III 族サ イトの Ga の含有率を反映している。

The x－ray non－resonant／resonant scattering experiments have been performed for the ultra－short period superlattices of $\mathrm{AlAs}_{n} / \mathrm{GaAs} m(\mathrm{n}: \mathrm{m}=3: 7$ ）in order to estimate the lattice constants，the constitution and the crystalline distortion．The satellite peaks，which were originated from the superlattices with the period of 9.85 ML and 1.69 ML ，have been observed in $(00 \mathrm{~L})$ profiles．The ratio of thickness of AlAs：GaAs have been estimated as $0.28: 0.72$ from the difference of the peak position between the substrate and the superlattice using the Poisson ratio 0.32 for AlAs phase．The energy dependences of peak intensities at Ga K －edge，which contain the information of the constitution of Ga atom at III sites，have been measured．

背景と研究目的

III－V 族化合物半導体である GaAs を母体 としたヘテロ構造デバイスは伝導特性•発光特性に優れることから，既に商品化され現代 の高度な情報化社会に寄与している。分子線

エピタキシー蒸着（MBE）法により異なる格子定数・エネルギーギャップ（EG）を持つ半導体 を整合性良く積層させた人工周期ヘテロ構造 では，界面において組成を急峻に変化させる

ことでキャリアのポテンシャル分布を制御す

Fig． 1 半導体の超格子構造とエネルギーギャッ プを表した模式図

ることが可能である。特に光デバイス材料と して，混晶半導体 AlGaAs を短周期超格子 AlAs／GaAs に置き換えた系（デジタルアロ イ）が近年注目を浴びている ${ }^{1-3)}$ 。

この系の超格子は混晶に比べ組成の揺らぎ が小さく結晶性も良好であり急峻な界面を形成できるため応用上重要であるが 2 ），その最適な層厚みや周期，成長中断など界面作成過程の効果が依然として不明であり，これらが波動関数の形状にどう影響をおよぼすか物理的にも大変興味深い問題が残つている ${ }^{4,5)}$ 。例 えば，周期長（ Λ ）が充分長く狭い EG を持つ井戸層が充分に厚い場合，量子閉じ込め効果は ほとんど無視できキャリアは3次元的振る舞 いをする（Fig．1（a））。 Λ を徐々に小さくすると量子閉じ込め効果が大きくなりキャリアは 2次元的振る舞いをするようになる（多重量子井戸，Fig．1（b））。 Λ をさらに小さくしてバリ アーが薄くなるとトンネル効果により波動関

数の浸みだしが顕著になり，再びキャリアは積層方向に移動し始め 3 次元的となる（デジ タルアロイ，Fig．1（c））。しかしながら境界と なる Λ の大きさについては依然として充分に明らかではない。 Λ をサブモノレイヤーレベ ルまで小さくしていった際の EG の漸近値は フォトルミネッセンス測定により 2.0 eV と推定されたが，この値はA1GaAs 混晶の場合 にBowing パラメータから算出される値 1.9 eV より大きい。実測値と理論値との不一致を究明するためには，周期が短い時の結晶性•界面構造•周期長のバラツキ等の評価が不可欠である。しかし通常周期が短くなるに つれ超格子反射ピークの間隔は大きくなり本数が減りまたその強度も減少する。管球 X 線 を用いた回折実験では $\Lambda<2 \sim 3 \mathrm{ML}$ と短くな ると超格子ピークがバックグラウンドに埋も れてしまい検出することが困難となる。この ため Λ が $1+1=2 \mathrm{ML}$ 以上についての報告は多いものの，2ML 未満もしくは非整数 ML となる場合の報告はない。TEM の観察から は，界面において原子が整合性よく配列して いる様子が伺えるが，局所的な情報であるう え元素の特定は困難であり議論の余地が残っ ている。

本研究の目的は，周期 Λ の異なる幾つかの AlAs／GaAs 超格子に対し放射光を用いた非共鳴／共鳴X線散乱実験を行い，積層周期の評価を行うと同時に AlAs，GaAs それぞれの層厚ならびに組成の，揺らぎを考慮した定量評価を行うこと，また共鳴散乱の手法6，7）によ り Ga 原子の位置情報のみを強調して抽出す ることでGa 含有率および組成分布を決定す ることである。

実験

実験はBL13XU ハッチ 1 にて室温大気中 にて行った。測定は周期 Λ が（i）10ML （ii）1．7ML（iii） 1.3 ML の三種類の $\mathrm{AlGa} / \mathrm{GaAs}$系デジタルアロイ半導体試料に対し行った。全ての試料は $\mathrm{Ga}(001)$ 基板上にバッファ成膜 した後，積層部において組成比 AlAs：GaAs＝ 3：7，厚み 1000ML となるよう設計製作され ている。

Fig． 2 実験から得られた（00L）プロファイル（黒）と シミュレーション結果（青）。（i）設計周期 10 ML （ii）設計周期 1．7ML（iii）設計周期 1．3ML につい ての結果

モノクロメータにより単色した入射 X 線 をゴニオメータに設置した半導体試料に入射 し，散乱光をディテクタにて検出する。半導体試料は散乱面と積層面が平行となるよう配置し，散乱角 2θ のスキャンを行うことで，逆格子空間内の（ 00 L ）方向の情報を得る。入射エネルギーとして，いずれの元素の共鳴条件ともはずれる 8.05 keV ， Ga の共鳴エネル ギーである 10.37 keV 近傍について測定を行った。

結果および考察

$\theta-2 \theta$ スキャンから得られた $(00 \mathrm{~L})$ プロ ファイルを Fig． 2 に示す。図中には，積層方向の原子位置のみを考慮したシミュレーショ ンの結果も示してある。設計周期 10ML のサ ンプル（i）においては（002）反射と（004）反射を ほぼ 10 等分する L の位置に超格子構造に起因するサテライトピークが観測されている。 また設計周期 1．7ML のサンプル（ii）について も，3つのサテライトピークを観測すること ができた。

しかしながら設計周期が 1．3ML のサンプ ル（iii）ではサテライトピークが見られず，設計通りの周期構造が成膜できていないことが

Fig． 3 設計周期 10 ML のサンプル（i）についての （002）ピーク付近のプロファイル。実測（黒）と シミュレーション（青）

Fig． 4 各サンプルにおける基板（Substrate）からの （004）反射と超格子（SL）部分からの（004）反射 のピーク強度のエネルギー依存性

伺える。サテライトピーク位置から正確な周期を算出したところ，（i）9．85ML（ii）1．69ML が得られた。サテライトピーク位置についてシ ミュレーション結果と実験値とは大変よく一致している。周期が非整数であり，かつ AlAs の膜圧が 1 ML 以下と大変薄い場合について も MBE 成膜が可能であることが実験的に証明された。Fig． 3 にサンプル（i）の（002）ピーク まわりを拡大して示す。図にはGaAs 基板か らの鋭い反射と超格子部分からの比較的プ ロードな反射が見られる。 ± 1 次のサテライ トピーク位置の平均をとることで超格子のメ インピーク位置とし，積層方向についての格子定数比 aSL／aSubstrate＝ 1.0011 を導出した。さ らに，AlAs のポアソン比 0.32 を用いること で積層部分の膜圧比 AlAs：GaAs＝0．28：0．72 を得た。この値は設計と大変良く一致する。こ の値からの計算結果（Fig． 3 中の青色）は，ピー ク裾の振動部分にて実測値と若干の位置のず れが見られるものの，強度変動はよく一致し

ている。
Fig． 4 に Ga のK 吸収端（10．37keV）の近傍で の基板からのピークと超格子部分からの ピークそれぞれの積分強度のエネルギー依存性を示す。各サンプルともに基板ピーク強度 が 10．365～10．370keV で大きく減少している のに対し，超格子部分のピーク強度は比較的減少が少ない。これは，超格子部分において はIII族サイトにAlが含まれる分 Ga 濃度が低くなり，Ga の共鳴散乱の効果が強度に反映されにくくなっていることを意味する。散乱強度は散乱因子の二乗に比例し，比例係数 は基板反射と超格子反射とで等しいと仮定し，吸収端より低エネルギー側の 10.355 keV と 10.367 keV との強度差から計算を行ったとこ ろ，超格子部分の Ga の含有率がサンプル（i） において 47% ，サンプル（ii），（iii）においてとも に 18% となった。この値は設計における Ga含有率 70% と大きく外れる。この原因は，基板ピークの強度と形状を支配していると思わ れる動力学的効果および吸収効果を取り入れ ていないためと思われる。これらの知見をも とに，比較対称とする反射の取捨を行い，更 に詳細な解析を行うことで，ポアソン比を使用することなく Ga 濃度を導出する方法の確立を図る。この手法は，より歪みの大きい系 やポアソン比が不明な系，界面内部での組成摇らぎの大きい系の超格子構造における組成評価に大変有力である。

参考文献

1）W．Ge，J．Luminescence 59 （1994） 163
2）S．Koshiba，J．Crystal Growth 201－202（1999） 810

3）J．H．Li，Phys．Rev．Lett． 91 （2003） 106103

4）S．Koshiba，Trans．JIM 29 （1988） 403
5）S．Koshiba，J．Crystal Growth 95 （1989） 51
6）Y．Watanabe，Trans．JIM 29 （1988） 81
7）Y．Tanaka，MRS International Meeting on Advanced Materials 3 （1989） 347

キーワード

－デジタルアロイ
半導体の超格子構造において周期が数 ML
と短くなった場合，キャリアの波動関数が障
壁層をまたいで隣接する井戸層と干渉し，3次元的な振る舞いをする。このような相を MBE 成膜法によりモノレイヤー単位で設計 することが可能であり，デジタルアロイと呼 ばれる。
－X 線共鳴散乱
特定元素の吸収端近傍にて散乱因子の実部と虚部が急激に変化する現象。これにより散乱強度に含まれる特定元素のみの情報を抽出することが可能である。

