非晶質 $\mathbf{K N b O}_{\mathbf{3}}-\mathbf{S i O}_{\mathbf{2}}$ から $\mathbf{K N b O}_{\mathbf{3}}$ ナノ結晶生成及び構造相転移 Formation of nanocrystals and structural phase transitions of Amorphous $\mathrm{KNbO}_{3}-\mathrm{SiO}_{2}$

宋 哲昊 ${ }^{\text {a }}$ ，金 廷恩 ${ }^{\text {a }}$ ，大嶋建一 ${ }^{\text {b }}$ ，梁 龍錫 ${ }^{\text {a }}$ C．H，Song ${ }^{\text {a }}$ ，J．E．Kim ${ }^{\text {a }}$ ，Ken－ichi Ohshima ${ }^{\text {b }}$ ，Y．S．Yang ${ }^{\text {a }}$
${ }^{\mathrm{a}}$ 釜山大学 ナノ科学技術学部，誘電体物性研究所，物理学科 ${ }^{\mathrm{b}}$ 筑波大学 数理物質科学研究科
${ }^{\text {a }}$ School of Nano Science \＆Technology，RCDAMP，Dept．of Phys．，Pusan National Univ．
${ }^{\mathrm{b}}$ Institute of Material Science，Univ．of Tsukuba

$4 \mathrm{KNbO}_{3}-1 \mathrm{SiO}_{2}$ 非晶質の結晶化過程間， $4 \mathrm{KNbO}_{3}$ ナノ結晶のキュリー（curie）温度 $\left(\mathrm{T}_{\mathrm{c}}\right)$ のサイズ依存性を研究した。 $4 \mathrm{KNbO}_{3}$ ナノ結晶のサイズは様々な温度で非晶質試料の熱処理により制御した。粉末実験は大型放射光施設 Spring－8 の BL02B2 で行った。波長は $0.90116 \AA$ で，大型デバイシェラーカメ ラを利用した。温度調節は窒素ガス吹き付けの高温装置で行った。 $4 \mathrm{KNbO}_{3}-1 \mathrm{SiO}_{2}$ で KNbO_{3} ナノ結晶は温度の上昇により，斜方構造から立方構造への構造変化があった。そして，粒子サイズが小さく なるにつれ， T_{c} も低温のほうに移動した。

We investigated the phase transition process，the formation of nano crystal，the size dependence of the curie temperature T_{c} of KNbO_{3} crystal during crystallization of $4 \mathrm{KNbO}_{3}-1 \mathrm{SiO}_{2}$ glass．We controlled KNbO_{3} particle size by annealing an amorphous sample at various temperatures．The powder diffraction experiments were carried out at BL02B2 in the synchrotron radiation facility，SPring8 with the large Debye－Scherrer camera and the wavelength $0.90116 \AA$ ．Temperature was controlled by a nitrogen gas flow system． KNbO_{3} nano crystals in $4 \mathrm{KNbO}_{3}-1 \mathrm{SiO}_{2}$ transformed from orthorhombic to cubic phases with increasing temperature．And the T_{c} decreased with decreasing particle size．

背景と研究目的

強誘電体は圧電アクチュエータ，音響セン サー，熱的焦電センサー，キャパシターなど半導体または電気，電子産業の分野で優れた性質を持つ材料で，近年その利用開発が活発 である。特に，ペロブスカイト構造の
$\mathrm{BaTiO}_{3}(\mathrm{BT}), \mathrm{PbTiO}_{3}$ などの強誘電体物質は結晶粒子のサイズがナノメートルぐらいになる と粒子のサイズに従って物質の特性が体積 （bulk）の場合とは異なる現象が報告されている［1］。強誘電体の KNbO_{3}（Potassium niobate， KN ）結晶は非線形光学特性と表面弹性波（SAW：
surface acoustic wave）などの特性を持つ材料 である［2－3］。KN はBT と同じ性質を持つ物質で，温度の下降により，相誘電性の立方構造（cubic，701 K）から強誘電性の正方構造 （te－tragonal，488K），斜方構造（orthorhombic， 210 K），菱面構造（rhombohedral）での構造相転移が ある［4］。しかし，KN 結晶のサイズによる構造的相転移に関しては今まで報告されていない。

本研究では $4 \mathrm{KNbO}_{3}-1 \mathrm{SiO}_{2}$ 非結晶の結晶化過程の間， KNbO_{3} 結晶が形成になるのを利用し， KNbO_{3} ナノ結晶の形成と臨界温度 $\left(\mathrm{T}_{\mathrm{c}}\right)$ の粒子大きさ（particle size）依存性に対して記述する。

実験

$\mathrm{K}_{2} \mathrm{CO}_{3}$ と $\mathrm{Nb}_{2} \mathrm{O}_{5}$ を 1：1 モール比で混ぜ， 1300 K で 5 時間熱処理をする。この試料はも う一度混ぜて，同じ温度と時間で熱処理を行 う。製作した KNbO_{3} はガラス形成物質の SiO_{2}粉末を混ぜて，白金チューブに入れる。これ は 1400 K まで温度を上昇させ，溶けた試料を双ローラにより急令させる。作製したガラス試料の厚さは $64 \mu \mathrm{~m}$ である。 $4 \mathrm{KNbO}_{3}-1 \mathrm{SiO}_{2}$非晶質はX－線実験でガラス相を確認し，熱分析実験を行う。 KNbO_{3} 結晶の格サイズは熱処理により制御する。各サイズによる構造相転移実験は大型放射光施設 Spring－8 の BL02B2 で行った。波長は $0.90116 \AA$ で，大型デバイシ エラーカメラを利用した。温度調節は窒素ガ ス吹き付け型高温装置を用いた。

結果，および，考察

図 1 は $4 \mathrm{KNbO}_{3}-1 \mathrm{SiO}_{2}$ 非晶質試料を 1393 K で5分間熱処理した後，常温まで急令させ，常温から 653 K まで取った X－線結果である。粒子サイズは回折ピークの半値幅を利用し，

Fig．1．In－situ XRD patterns with temperature for $4 \mathrm{KNbO}_{3}-1 \mathrm{SiO}_{2}$ sample annealed at 1393 K ．

Scherrer 式で計算した。回折ピークの半値幅 はガウス分布を用いた。

$$
\begin{equation*}
B(2 \theta)=\frac{0.94 \lambda}{L \cos \theta} \tag{式1}
\end{equation*}
$$

$B(2 \theta)$ は X 線回折ピークの半値幅，L は粒子 のサイズ，θ は回折ピークの位置，λ は X 線波長である。Scherrer 式から計算した KNbO_{3}粒子サイズは 70 nm である。 KNbO_{3} ナノ結晶 は温度の上昇により，斜方構造（313K）から立方構造（653K）～の構造相転移を示した。

図2は KNbO_{3} ナノ結晶の粒子サイズによ る構造相転移温度 $\left(\mathrm{T}_{\mathrm{c}}\right)$ を示す。相転移温度は各温度でのX線データからピークの分離と半値幅の比較から決めた。 KNbO_{3} ナノ結晶の粒子サイズが小さくなるによって，斜方構造か

Fig．2．The variation of phase transition temperature against KNbO_{3} particle size．

ら正方構造へ，正方構造から立方構造への相転移温度が低温のほうに移動した。サイズに よる相転移温度移動の原因は光散乱実験，誘電率測定などほかの測定方法で調べている中である。

今後の課題

各相のリファインを行い，電子密度分布か
ら精密な構造解析を行う。
様々なサイズを持つ KNbO_{3} ナノ結晶を製作し，各サイズでの構造相転移及び物理的な性質を調査する。

参考文献

［1］S．Tsunekawa，S．Ito，T．Mori，K．Ishikawa， Z．－Q．Li and Y．Kawazoe Phys．Rev．B 62 （2000） 3065.
［2］D．Xue and S．Zhang，Chem．Phys Lett 291 （1998） 401.
［3］B．Sundarakannan，K．Kakimoto and H． Ohsato，J．Appl．Aphys． 94 （2003） 5182.
［4］Z．X．Shen，Z．P．Hu，T．C．Chong，C．Y．Reh， S．H．Tang and M．H．Kuok，Phys．Rev．B 52 （1995） 3976.

キーワード

- 非結晶
- ナノ結晶
- 相転

