ヘマタイトーイルメナイト固溶体の磁気円二色性スペクトル

Magnetic Circular Dichroism of the Hematite-ilmenite Solid Solution System

藤井達生^a、高田裕輔^a、山下美樹^a、橋本英樹^a、中村哲也^b、小林啓介^b

<u>Tatsuo Fujii</u>^a, Yusuke Takada^a, Miki Hashimoto^a, Hideki Hashimoto^a,

Tetsuya Nakamura^b, and Keisuke Kobayashi^b,

*岡山大学、 * 高輝度光科学研究センター

^a Okayama Univ., ^b JASRI

本研究では、FeTiO₃(イルメナイト)- α -Fe₂O₃(ヘマタイト)固溶体の元素選択的な電子状態や磁性を、 X 線磁気円二色性スペクトル(XMCD) により検討した。その結果、本系固溶体の磁性は、主として Fe²⁺イオンが担っているが、同時に非磁性イオンである Ti⁴⁺にも明瞭な磁気分極が誘起されているこ とが判明した。すなわち、FeTiO₃中の Ti⁴⁺イオンは Fe 3d との混成により、従来の Ti⁴⁺化合物には見 られない高い 3d 電荷密度を持つことが明らかになった。

Element selective electronic and magnetic structures for a α -Fe₂O₃ (hematite) - FeTiO₃ (ilmenite) solid solution system are surveyed by x-ray circular dichroism (XMCD) spectroscopy. The magnetization of this solid solution system is mainly contributed by the Fe²⁺ ions. Besides the XMCD spectra at Ti L_{2,3} edges showed clear magnetic polarization of Ti⁴⁺ ions in Fe_{2-X}Ti_XO₃ in spite of nonmagnetic natures of Ti⁴⁺ ions in common sense. These results clearly suggested that the Ti ions in Fe_{2-X}Ti_XO₃ had some 3d electron densities caused by the Fe 3d - Ti 3d hybridization.

緒言

 α -Fe₂O₃ - FeTiO₃ 固溶体は、両端組成の α -Fe₂O₃ と FeTiO₃ が反強磁性絶縁体であるに もかかわらず中央組成近傍で強いフェリ磁性 と電気伝導性を示すことが知られている¹⁾。 くわえて近年の理論計算によると、T_C~900K の高温磁性半導体となる可能性も示唆されて おり、次世代のスピントロニクス材料として も関心を集めている²⁾。

ところで、従来の単純化されたモデルによ

ると、本系固溶体の磁性や電気伝導性は、反 強磁性体 α -Fe₂O₃の片方の磁気副格子を Ti⁴⁺ が置換することで生じる。すなわち、磁性イ オンである Fe³⁺を、非磁性イオンである Ti⁴⁺ で置換することにより片方の副格子磁化が大 きく減少し、フェリ磁性が出現する。また、 それと同時に、もう片方の磁気副格子の Fe³⁺ の一部は Fe²⁺に還元され、Fe²⁺と Fe³⁺の混合 原子価を生じるため電気伝導性を持つ。そし て 3d 電子を持たない Ti⁴⁺は、固溶体の磁性や 電気伝度性に直接的には関与しないと考えら れてきた。しかし、 Fe^{2+} のみに磁気モーメン トを仮定した場合に説明できない磁気構造の 揺らぎが、 $FeTiO_3$ 単結晶の中性子線回折パ ターンで見出されており、Ti イオンにも磁気モーメントが存在している可能性がある³⁾。 $くわえて我々は、<math>FeTiO_3$ の高分解能蛍光 X 線 測定の結果、得られた $Ti Ka線および K\beta線の$ ケミカルシフトや半値幅、サテライト線強度 などから、 $FeTiO_3$ 中の Tiは単純な Ti^{4+} の化学 状態にはなく, Ti^{3+} と Ti^{4+} の中間的な化学状態 にある可能性を示している⁴⁾。

そこで本研究では、化合物の構成イオンが もつ磁性や電子状態を元素選択的に評価する ことが可能な X 線磁気円二色性(XMCD)スペ クトルに注目し、Ti-L_{2,3}吸収端および Fe-L_{2,3} 吸収端の XMCD より、α-Fe₂O₃ – FeTiO₃ 固溶 体の磁気構造や電子構造を詳細に解明するこ とを目的とした。

実験

 α -Fe₂O₃-FeTiO₃固溶体の XMCD 測定は、 BL25SU の電磁石 MCD 装置を用いて行った。 試料は、固相反応法により作製した4種類の 異なる組成の Fe_{2-x}Ti_xO₃ (x=0.4, 0.7, 0.8, 1.0) 粉末焼結体であり、それらが目的とする固溶 体単相であることは、あらかじめ X 線回折法 で確認した。測定に際しては、細長い棒状に 加工した焼結体試料を、超高真空(~10⁻⁷ Pa)に 保たれた MCD 測定チャンバー中に導入し、 チャンバー内で破断することで、清浄な試料 表面を得た。

XMCD 測定は、印加磁場±1.9 T において、 低ノイズかつ高精度の試料電流測定が可能な 偏光反転モードで実施した。そして、磁場反 転時のデータと平均化することで、偏光反転 時のオフセットを除去したスペクトルを得た。

入射 X 線は、試料表面にほぼ垂直であり、 印加磁場方向に平行である。また、磁気転移 温度(T_c)近傍での XMCD スペクトルの変化を 観測するため、室温~50 K の範囲で試料温度 を変化させ、XMCD 測定を実施した。

結果及び考察

 $Fe_{1.2}Ti_{0.8}O_3$ 組成の試料について、50Kにお ける Fe L_{2,3}吸収端の吸収スペクトル(XAS)な らびに MCD スペクトルを図 1 に示す。 $Fe_{1.2}Ti_{0.8}O_3$ は、 T_C =約 220Kのフェリ磁性であ り、 $Fe_{1.2}Ti_{0.8}O_3$ 中の Fe イオンは、 T_C 以下で 非常に大きな磁気分極を持つことが期待され る。ところで、原子価モデルによると $Fe_{1.2}Ti_{0.8}O_3$ の化学状態は、 $Fe^{3+}_{0.4}Fe^{2+}_{0.8}Ti^{4+}_{0.8}O_3$ となり、Fe L₃吸収端の XAS に見られる 2本 の構造は、それぞれ、 Fe^{2+} (708.5 eV) と Fe^{3+} (710.1 eV)に対応している。そして興味深いこ とに、MCD スペクトルは、主として Fe^{2+} ピー

Fig.1 XAS and MCD spectra for the Fe $L_{2,3}$ absorption edges of $Fe_{1,2}Ti_{0,8}O_3$ measured at 50 K

-43 -

クからのみ強く出現しており、Fe³⁺ピークに はほとんど存在しない。すなわち、Fe_{1.2}Ti_{0.8}O₃ の磁気モーメントは、主として Fe²⁺イオンの みに由来しており、Fe³⁺イオンの寄与は無い ことがわかる。そしてこの結果は、固溶体中 のFe³⁺イオンのスピンは、反強磁性的に互い に打ち消しあうという従来の単純化されたモ デルとも一致した。

一方、図2には、同様に $Fe_{1.2}Ti_{0.8}O_3$ 組成の 試料について、50 K で測定した Ti $L_{2,3}$ 吸収端 のXAS ならびに MCD スペクトルを示す。Ti $L_{2,3}$ 吸収端のXAS スペクトルは、TiO₂など6 配位型のTi⁴⁺酸化物と同様のピーク形状をし ており、固溶体中のTi イオンの化学状態は本 質的にTi⁴⁺であると考えられる。しかし、Ti⁴⁺ イオンは d⁰電子配置であり、本来、非磁性で あるにも関わらず明瞭な MCD ピークが観測 されており、Ti⁴⁺イオンに大きな磁気分極が 誘起されていることが判明した。また、軌道 総和則を MCD スペクトルに適用したところ、 Fe^{2+} とTi⁴⁺の軌道磁気モーメントは反平行に 結合していることが分かった。すなわち、

Fig.2 XAS and MCD spectra for the Ti $L_{2,3}$ absorption edges of $Fe_{1,2}Ti_{0,8}O_3$ measured at 50 K.

 α -Fe₂O₃ – FeTiO₃ 固溶体においては、他の Ti⁴⁺ 化合物とは異なり、Ti⁴⁺の 3d 軌道と Fe²⁺の 3d 軌道の間で混成が生じ、Ti イオンが大きな 3d 電子密度を持つ可能性が示唆された。

今後の課題

Ti L_{2,3} 吸収端の MCD スペクトルの場合、 スピン-軌道相互作用が小さいため L₂ と L₃の 分裂が小さく、しかも、そこに大きな結晶場 分裂が加わるためスペクトルの形状が複雑と なり、スピン総和則が単純には適応できない。 そのため、Ti 3d 電子密度等をより定量的に評 価するためには、スペクトルの理論解析が必 須であり、理論家を巻き込んでの結果の解析 が必要である。

参考文献

- 1) Y. Ishikawa, J. Phys. Soc. Jpn. 17 (1962) 1835.
- W. H. Butler, A. Bandyopadhyay, and R. Srinivasan, J. Appl. Phys. 93 (2003) 7882.
- 3) H. Kato, J. Phys. C 19 (1986) 6993.
- 4)藤井、高田、上藤、橋本、伊藤、栃尾、 大橋、堀口、Vlaicu,吉川、福島、 Nano-technology in SPring-8 研究成果報告 書、5 (2004) 30.

論文発表状況・特許状況

- [1] 藤井、山下、藤森、齋藤、中村、小林、 高田、日本物理学会第 61 回年次大会 発表 予定
- [2] T. Fujii, M. Yamashita, S. Fujimori, Y. Saitoh,
 T. Nakamura, K. Kobayashi, and J. Takada,
 submitted to International Conference on
 Magnetism 2006, Kyoto.

キーワード

・スピントロニクス材料

電子のスピンを積極的に利用した電子材 料のこと。高いキュリー温度を持ち、一方向 に完全にスピン偏極した伝導電子を持つ半金 属磁性体や磁性半導体の開発が望まれている。