鉄ベース合金ナノ粒子の X 線異常散乱を利用した 小角散乱および粉末回折精密測定

SAXS and powder XRD measurements using the anomalous X-ray dispersion effect on the iron-base alloy nanoparticles

篠田弘造^a、B.ジャヤデワン^b、鈴木 茂^a、奥井眞人。

Kozo Shinoda^a, Balachandran Jeyadevan^b, Shigeru Suzuki^a, Masato Okui^c

^a 東北大多元研、^b 東北大院環境科学、^c 神津精機株式会社 ^aIMRAM, Tohoku Univ., ^bGrad. Sch. Env. Studies, Tohoku Univ., ^cKohzu Precision Co., Ltd.

液相還元法(ポリオールプロセス)により合成した bcc ベースの FeCo 合金ナノ粒子を対 象として、その結晶格子中における各元素配列の order/disorder 状態、および粒子内の元素分 布均一性を調べるために、SPring-8 BL15XU を利用した粉末X線回折およびX線小角散乱実 験を実施した。FeK吸収端近傍低エネルギー側の複数のエネルギーでの単色X線を入射し、 試料からの回折強度および小角散乱強度プロファイルを測定した。FeのX線原子散乱因子 における異常分散効果を利用することにより、通常実験では不可能な、FeCo 超格子結晶構 造形成の有無の判定および粒子内での Fe 分布均一性を知ることができる。試料は、粉末X 線回折実験用として組成一定の as-synthesized およびその熱処理試料、小角散乱測定用として 異なる組成の試料を用いた。結果、as-synthesized 試料では disordered-bcc (A2) 構造であったも のが、熱処理により ordered-bcc (B2) 構造に転移していることを確認した。またどの試料にお いても、粒子内では Fe と Co は均一に分布していることが分かった。

The powder X-ray diffraction and the small-angle X-ray scattering measurements utilizing the anomalous dispersion effect of Fe were carried out on FeCo alloy nanoparticle samples synthesized by a liquid phase chemical method called the polyol-process at the BL15XU in the SPring-8. The results of the powder X-ray diffraction experiments indicated that the as-synthesized FeCo particle with disordered-bcc (A2) crystal structure transformed to ordered-bcc (B2), which is commonly referred to as 'superlattice structure', by heating to 600 °C or above. And from the results of the small-angle X-ray scattering utilizing the anomalous dispersion effect of Fe, it was confirmed that elemental distribution in the FeCo alloy particles was homogeneous.

研究背景および目的

鉄ベース合金ナノ粒子は磁性体としての応 用をはじめ、磁気損失による発熱を利用した 医療分野、低損失特性を利用した交流電子デ 手法のひとつであるポリオールプロセスを適 バイス分野などへの幅広い応用が期待され

る。その開発においては、ナノレベルでの粒 径、形態、組成、結晶構造の広いレンジでの 精密制御が必須である。我々は、液相還元的 用し、図1に示すような平均粒径 50~150nm、

Fig. 1 SEM images of the FeCo alloy particle samples

平均結晶子径約 20nm の多結晶 FeCo 合金ナ ノ粒子を得た¹⁾。Fe₅₀Co₅₀合金においては、お よそ980 ℃以下の温度領域では bcc 構造を基 本として条件により ordered B2 型超格子構造 あるいは disordered A2 構造をとるとされてい る²⁾。FeCo 合金の電磁気特性は組成とともに 結晶構造に大きく依存するので、その詳細な 把握は特に重要である。しかし現状の FeCo 合金に関する構造・物性情報はバルク材に対 するものであり、液相還元により合成された ナノ粒子形態試料に関する知見はほとんど得 られていない。今回は、ポリオールプロセス により合成した FeCo 合金ナノ粒子およびそ の熱処理試料に対して、FeK吸収端近傍の エネルギー領域における X線原子散乱因子 異常分散項の変化、いわゆる異常散乱現象 を利用した粉末X線回折実験を実施し、通常 はFeとCoの原子散乱因子差が極めて小さい ため不可能な、超格子構造由来の回折ピーク の有無からの order/disorder 判定および結晶相 への熱処理の影響調査を試みた。また、試料 中Fe,Co各元素の分布の揺らぎを調べるため に、FeK吸収端近傍での異常小角散乱測定 をあわせて実施した。

実験

一連の放射光利用実験は BL15XU の高分解 能粉末回折装置を利用して実施した。回折測 定実験においては、粉末試料を 0.3mm 径の ガラスキャピラリーに充填して使用し、Fe K 吸収端 (7111eV) より 300, 150 および 25eV 低 エネルギー側の 6811, 6961 および 7086eV の入 射ビームエネルギーを利用して B2 構造に由 来する超格子回折ピーク(面指数100および 111) 前後の回折強度プロファイルを測定し た。異なる入射エネルギー間での相対的な回 折強度規格化には、測定エネルギー領域にお いて回折強度にエネルギー依存性を有しない 標準 Si 粉末の実測値を用いた。実験に用い た試料は、ポリオールプロセスにより合成し た Fe₅₀Co₅₀ 合金粒子およびこれを N₂ 雰囲気下 で600℃、Ar 雰囲気下で850℃まで熱処理し たものである。一方小角散乱測定実験におい ては、図2に示すように空気散乱によるバッ クグラウンドを抑制するためビームパス中に 設置した専用の真空チャンバー内に試料を置 いて、6811 および 7086eV の入射ビームエネ ルギーにおける小角 X 線散乱強度プロファ イルを測定した。各入射エネルギー条件間で の散乱強度相対値を規格化するために、グラ ファイト粉末ペレットからの小角散乱強度実

Fig. 2 The experimental setup for small-angle X-ray scattering measurement at BL15XU in SPring-8.

測プロファイルを用いてスケール因子を求めた。 試料は、図1に示した Fe₇₀Co₃₀, Fe₅₀Co₅₀, Fe₃₀Co₇₀と組成の異なる3種の合金粒子である。

結果および考察

FeおよびCoK吸収端近傍の入射X線エ ネルギーに対する X線原子散乱因子の異常 分散項実部f'および虚部f"と、そのときの (100) 超格子回折に対する構造因子の変化を 図3に示す。原子番号が隣同士である Fe と Coの原子散乱因子の差は小さく、例えば Cu Kα線を用いた通常の回折実験では B2 構造 を形成していても超格子回折ピークを検出す ることはできないが、Fe あるいは Co K 吸収 端近傍における異常分散項の変化を積極的に 利用することによって原子散乱因子差を拡大 し、超格子構造形成の有無を敏感に検知で きる。図4に、(100)超格子回折ピークの実 測プロファイルを示す。これより、合成時に は disordered A2 構造であったものが 600℃以 上の熱処理によって B2 超格子構造に転移す ることが分かった。また高温での熱処理によ り焼結に伴う結晶子サイズの粗大化がみられ る。

Fig. 3 Anomalous dispersion terms of Fe and Co, and the square of structure factor for (100) superlattice reflection in case of forming B2 structure.

図3において、FeK吸収端より低い入射 X線ビームエネルギー領域では、Fe, Coとも に異常分散項虚部の値がゼロに近くほぼ等 しい。一方異常分散項実部においては Co は ほぼ一定であるのに対して Fe はエネルギー に対応して著しい変化を示すことが分かる。 従って、FeK吸収端より25および300eV低 いエネルギーを用いた X線小角散乱強度プ ロファイルの差を取ると、Coからの寄与を 相殺し Fe に関する情報のみを抽出すること になる。組成の異なる各試料に対する測定結 果を図5に示す。各入射ビームエネルギーで の散乱強度プロファイルと、それらの強度差 プロファイルに大きな差異がみられないこと から、いずれの試料においても合金粒子内の Fe 元素分布は均一であるといえる。またこ の図は両対数プロット (Porod プロット) で 示しているが、いずれの試料においてもほぼ 直線となっており、その傾きαは3.1~3.3程 度となっている。測定した波数領域はおよそ 0.2 < q < 1.2 nm⁻¹ であり、電顕観察による粒子

Fig. 4 Diffraction peak intensity profiles for (100) superlattice reflection at incident beam energies of 25, 150 and 300eV below the Fe K absorption edge.

径が 100nm 前後であることを考えると、こ れは粒子表面の平滑性に関係するいわゆる Porod 領域である。 $D_s = 6 - \alpha$ で与えられる表面 フラクタル次元 D_s は 2.7~2.9 となり、粒子表 面は平滑というよりはむしろ 3 次元的な凹凸 をもっているという結果が得られた。

今後の課題

異常散乱効果を利用した粉末 X 線回折実 験の結果から、液相還元法のひとつポリオー ルプロセスを適用して合成したナノ粒子形態 を有する FeCo 合金では、disorder-bcc (A2) 構 造を形成しているが、600℃の不活性ガス雰 囲気中での熱処理時に order-bcc (B2) 構造へと 転移し、さらに高温では焼結・結晶粒成長 を生ずることが分かった。一方、Ar 雰囲気 中 850℃までの示差走査熱量測定 (differential scanning calorimetry, DSC) 結果から、Fe₅₀Co₅₀ は 730℃で B2/A2 構造転移によるものと思われ る吸熱ピークを示し、これはバルク材料と同 様であるが、より低温域でも複雑な急発熱 ピークを示している。これと今回の回折実験 結果をあわせて考えると、合成時に形成した A2 構造が加熱に伴って複雑な変化履歴を辿 りながら ordering して B2 構造を形成した後、

Fig. 5 Small-angle X-ray scattering intensity profiles measured at 300 and 25 eV below the Fe K absorption edge and their differential intensity profiles for the FeCo alloy particles with different composition.

焼結・結晶粒成長と disordering して 850℃に 達してから、冷却過程では再び約 730℃で B2 構造へと転移したものと考えられる。今後さ らに、焼結を起こさないより低温域での加熱 条件下における結晶構造の詳細な追跡が必要 である。また、ポリオール法で合成された合 金粒子は、100nm 前後というサイズにもかか わらず大気中でも安定であり、比較的高い耐 酸化性を示すという特長を有する。その要因 が粒子表面領域での特異な組成あるいは構造 のいずれかにあるものと予想されたが、今回 の異常散乱効果を適用した小角X線散乱測 定結果より、粒子内における元素分布はほ ぼ均一であることが分かった。従って、表 面での組成特異性というよりも、最表面の 原子配列の特異性に起因するものと考えら れる。しかしその詳細については XPS (X-ray photoelectron spectroscopy) 等表面分析や高分解 能透過電子顕微鏡 (HR-TEM) による観察など の結果とあわせて、さらなる考察が必要であ る。

今回の実験では、単一組成試料の結晶構造 に対する熱処理効果解明の基礎的実験とし て異常散乱を利用した粉末 X 線回折測定を、 また異なる組成の試料に対する粒子内元素分 布均一性調査のために X 線異常小角散乱測 定を実施し、有用な知見を得た。これらの手 法をさらに条件の異なる試料に対して適用す るとともに、表面分析等他の評価手法を用い た結果とあわせた詳細かつ総合的な検討を通 じて、ポリオールプロセスによる合金ナノ粒 子の構造・特性評価を進めたい。

参考文献

- D. Kodama, K. Shinoda, R. J. Justin, T. Matsumoto,
 K. Sato, B. Jeyadevan and K. Tohji, IEEE Trans.
 Mag. 42 (2006) 2796. / D. Kodama, K. Shinoda, K.
 Sato, Y. Konno, R. J. Joseyphus, K. Motomiya, H.
 Takahashi, T. Matsumoto, Y. Sato, K. Tohji and B.
 Jeyadevan, Adv. Mater. 18 (2006) 3154.
- 2) 改訂4版金属データブック,日本金属学 会編,丸善,2004.

成果報告・発表予定

篠田弘造, 鈴木 茂, 兒玉大介, 田路和幸, B. ジャヤデワン, 日本金属学会 2007 年春期 講演大会(口頭発表) その他現在投稿論文準備中