光電子顕微鏡による Pt/CuO/Pt 構造の抵抗変化に伴う 不均一な化学状態の観察

Observation of inhomogeneous chemical states associated with resistance changes of Pt/CuO/Pt structures by photoemission electron microscopy

安原 隆太郎 ^a, 藤原 宏平 ^b, 堀場 弘司 ^{a,c,d}, 小嗣 真人 ^{c,e}, 組頭 広志 ^{a,c,d}, <u>尾嶋 正治</u> ^{a,c,d}, 高木 英典 ^{b,f} R. Yasuhara^a, K. Fujiwara^b, K. Horiba^{a,c,d}, M. Kotsugi^{c,e}, H. Kumigashira^{a,c,d}, M. Oshima^{a,c,d}, and H. Takagi^{b,f}

^a 東大院工, ^b 東大院新領域, ^cJST-CREST, ^d 東大放射光機構, ^eJASRI/SPring-8, ^f理研 ^aDepartment of Applied Chemistry, The University of Tokyo, ^bDepartment of Advanced Materials, The University of Tokyo ^cJST-CREST, ^dThe-University-of-Tokyo SRRO, ^eSPring-8/JASRI, ^fRIKEN

放射光光電子顕微鏡を用いて抵抗スイッチング現象を示す Pt/CuO/Pt 構造の化学状態の空間分布を 調べた。その結果、フォーミングと呼ばれる最初の電圧印加による高抵抗状態から低抵抗状態への変 化は Pt 電極間の CuO の還元によるものであることを明らかにした。

The spatial distribution of chemical states for resistance-switching Pt/CuO/Pt structures have been studied by photoemission electron microscopy with synchrotron radiation. We have found that the resistance change from the high resistance state to the low resistance state by the first bias application called forming process is associated with the reduction of the CuO channel between Pt electrodes.

キーワード:抵抗変化型ランダムアクセスメモリ、光電子顕微鏡、X線吸収分光

背景と研究目的: 電源を切っても記憶情報が リセットされない不揮発性メモリは現在のとこ ろフラッシュメモリが広く用いられている。し かし、更なる大容量化・高速化を目指し、ポス トフラッシュと呼ばれる新型不揮発性メモリの 研究が盛んに進められている。その中でも、遷 移金属酸化物を金属電極で挟んだ構造をもつ抵 抗変化型ランダムアクセスメモリ(Resistance Random Access Memory: ReRAM)は、電圧印加 により巨大な抵抗変化を示すという特性に加え、 高速応答・単純な構造・既存の LSI プロセスで 対応可能・高集積化可能などの利点から、新型 不揮発性メモリとして注目されている。

しかし、抵抗変化のメカニズムはいまだ解明 されておらず、ReRAMの実用化に向けて大き な障害となっている。その原因としては、動作 機構としてこれまでに様々なモデルが提案され ているが、微視的・分光学的な実験結果は僅か であり、素子内で生じている変化を十分に追跡 できていないことが挙げられる。

一方、光電子顕微鏡(Photoemission Electron Microscope: PEEM)は光照射によって生成した 光電子・2次電子を拡大・投影する電子顕微鏡 であり、この大半を占める2次電子の放出量は 吸収強度に比例するため、微小領域におけるX 線吸収分光 (X-ray Absorption Spectroscopy: XAS) スペクトルが得られる。すなわち、PEEM を用いることにより化学状態の2次元マッピン グを調べることが可能となる。

そこで本研究では、PEEM を用いて Pt/CuO/Pt 構造 ReRAM 素子の抵抗変化に伴う化学的相分 離の直接観察を行い、微小領域の XAS 測定から 化学状態変化と抵抗変化の相関を調べた。

実験: Pt/CuO/Pt 構造 ReRAM 素子構造を図 1 に示す。CuO 薄膜 (2.6 µm) は SiO₂/Si 基板上に CuO 多結晶ターゲットを用いて RF マグネトロ ンスパッタリング法により堆積した。Pt 電極(70

Figure 1. Sample structure of Pt/CuO/Pt ReRAM devices.

nm)を電子ビーム堆積法により堆積した後、集 束イオンビームにより CuO チャネルを作製し た¹⁾。

PEEM 測定は SPring-8 の BL17SU で行い、Cu L3 吸収端の XAS 測定を行った。XAS 測定の際 の検出深さは約 14 nm、空間分解能(面内)は 80 nm 以下である。

結果、および、考察: 図2(a)に初期低抵抗化 (フォーミング) プロセス後の走査型電子顕微 鏡 (Scanning Electron Microscope: SEM) 像を示 す。フォーミングプロセスにより低抵抗領域(粒 が融けたように見える領域。以降"ブリッジ" と表記)が生成していることが確認できる。図 2(b)にSEM像と同じ領域における、PEEMを用い た還元成分(1価もしくは0価)の面内マッピン グを示す。この図はCu (II)吸収端 (hv = 930.3 eV)の吸収強度に対するCu (I)およびCu金属吸 収端(hv = 932.6 eV)の吸収強度比の面内分布 を示しており²⁾、図中の明るい部分が還元成分 の分布に対応している。さらに、図2(c)にチャ ネル領域およびブリッジ領域のCu L3吸収端 XASスペクトルを示す。図2(b)においてブリッ ジ領域でチャネル領域に比べて明るいこと、お よび図2(c)においてブリッジ領域のXASスペク トルでCu(I)もしくはCu金属由来のピークが

Figure 2. (a) A SEM image of the planar-type Pt/CuO/Pt resistance-switching device. (b) The PEEM image processed by the calculation; $I_{ratio} = I_{raw,932.6} / I_{raw,930.3}$. (c) XAS spectra of Cu L3 absorption edge for bridge and CuO channel structures.

チャネル領域に比べて大きいことより、ブリッジ領域でCuOの還元反応が進行していることが 分かる。このことから、抵抗変化が酸化還元反応によって生じることを明らかにした。

さらに、フォーミング後の高抵抗状態(HRS)/低抵抗状態(LRS)スイッチング時における化 学状態変化観察も行ったが、明瞭な化学状態変 化は見られなかった。このことから、HRS/LRS スイッチングにおける変化はブリッジ内の非常 に微小な領域に限られており、その変化量の小 ささが高速スイッチング応答に寄与していると 考えられる。

今後の課題: 今回の測定では観察できなかっ たが、今後ブリッジ内のより微細な領域におけ る化学状態変化を追跡することにより、抵抗変 化機構に関するより直接的な証拠を得ることが 可能であると考えられる。そのためには、より 高い空間分解能およびそれを実現するための PEEM 装置除振機構が必要である。

参考文献

- K. Fujiwara *et al.*, Jpn. J. Appl. Phys. **47**, 6266 (2008).
- 2) A. B. Gurevich, *et al.*, Surf. Sci. **442**, L971 (1999).