マルチフェロ候補物質 TeMnO₃, TeCoO₃, TeNiO₃の精密構造解析 Precise structure determination of multiferroics candidates TeMnO₃, TeCoO₃ and TeNiO₃

龍 文有, <u>東 正樹</u>, 島川祐一 Youwen Long, Masaki Azuma, Yuichi Shimakawa

京都大学化学研究所 Inst. Chem. Res., Kyoto Univ.

放射光X線粉末回折を用い、マルチフェロイクスとして期待される TeMO₃(M=Mn, Co, Ni)の構造解析 を行った。TeNiO₃が Ni が二つのサイトに分かれた P2₁/n の空間群を持つ単斜晶相であることを新た に見いだした。強誘電相である Pna2₁空間群を持つ GdFeO₃型構造を期待したが、そうした転移を観 測することはできなかった。

The crystal structures of multiferroics candidates $TeMnO_3$, $TeCoO_3$ and $TeNiO_3$ were determined by synchrotron X-ray powder diffraction expecting the transition to polar Pna2₁ structure. The structures of $TeMnO_3$ and $TeCoO_3$ were centrosymmetric GeFeO3 type down to 90 K. $TeNiO_3$ had a monoclinic P21/n symmetry, but no indication of charge disproportionation was found.

キーワード:マルチフェロイクス、構造相転移

背景と研究目的: 強誘電性と磁性が共存す るマルチフェロイクス材料は、次世代多値メ モリ材料やセンサー材料として注目を集めて いる。我々はこれまでAサイトにBi³⁺, Pb²⁺を 含む材料に注目して研究を行ってきた。これ は、6s²の孤立電子対によって強誘電歪みを安 定化し、Bサイトの遷移金属の磁性と共存さ せるためである。一方Te⁴⁺も同様に6s²孤立電 子対を持つが、Teペロブスカイトの研究は、 強磁性体として注目されたTeCuO₃をのぞい てほとんど行われていない。

TeMO₃としてはM=Mg, Mn, Co, Ni, Cu, Zn の合成の報告が1976年に行われているが、こ のときはAサイトが遷移金属、BサイトがTe と報告されている。そこで、TeCuO3以外化合 物についても構造解析を行い、TeがAサイト を、MnがBサイトを占めることを確かめる。 また、TeMO₃を強誘電体としてとらえる研究 はこれまで存在しなかった。代表的な強誘電 ペロブスカイトであるBaTiO₃、PbTiO₃ではA サイトイオンが大きくBサイトイオンが小さ くて、トレランスファクターが1を超えること でP4mmの正方晶歪みが起きている。これに 対し、TeMO₃ではTe⁴⁺が小さく、GdFeO₃型の 歪みが生じているためである。しかしながら 最近、GdFeO₃型であってもCdTiO₃がT_C=50K の強誘電体であることが見いだされている。 この際、結晶の空間群はPnmaからPna21へと 低下する。また、BiInO₃は室温で強誘電性相

である。Te⁴⁺もBi³⁺と同じく6s²の孤立電子対 を持つので、TeMO₃が強誘電体である可能性 は高い。実際、我々のTeMnO₃試料について、 200Kで誘電率の異状を観察している。そこで、 TeMnO₃、TeCoO₃、TeNiO₃、そして参照物質 として非磁性のTeZnO₃について、高分解能の 放射光粉末X線回折(SXRD)実験でPna2₁へ の対称性の低下を調べた。

実験: 試料はキュービックアンビル型高圧 合成装置を用い、6GPa 1000℃で合成した。得 られた試料から沈降方で粗大粒子を取り除い た後、0.2mmのキャピラリーに詰めた。X線 回折パターンははBL02B2の大型デバイシェ ラーカメラを用いて測定した。波長は0.77337 Åである。リートベルド解析にはGSASを用 いた。

結果、および、考察: Fig.1に TeMnO₃のX 線回折パターンを示す。斜方晶 Pnma の空間 群を持つ GdFeO₃型を仮定して構造を精密化 することができた。誘電率で異状が見られた 200K 以下の低温である 90K まで測定を行っ たが、Pna2₁への対称性の低下は見られなか った。このことから、200K の異状は強誘電転 移ではないことが分かる。TeCoO₃も同様の結 果であった。一方 Fig 2 の TeNiO₃は、室温で a=7.49805, b=5.95475, c=5.21074, β=90.0169 の単斜晶 P21/n の結晶構造を持っていた。こ れは YNiO₃ と同じ Ni が 2 サイトある構造だ が、Ni1 サイトと Ni2 サイトのボンドバレン スサムはそれぞれ 1.72 と 1.88 で、YNiO₃ で見 つかっているような明確な電化不均化は観測 されなかった。

Fig.1 SXRD pattern of TeMnO₃

Fig. 2 SXRD pattern of TeNiO₃

Fig. 3 Crystal structure of TeNiO₃.

Fig. 3 に TeNiO₃の結晶構造を示す。YNiO₃ 等、他のニッケルペロブスカイトと比べ、非常 に大きく歪んでいることが分かる。これは Te の孤立電子対の働きによる物と思われる。また、 参照物質として合成した TeZnO₃の回折パタ ーンは、a=7.96, b=5.26, c=13.07, β =101の 単斜晶で指数づけすることができた。この物 質についても構造を決定し、Te-Oの配位環境 を明らかにし、B サイトのイオンが変わるこ とによって、Te-O がどのように影響を受ける のかを調べる必要がある。

今後の課題: 今後はまだ決定できていない TeZnO₃の結晶構造を調べ、Bサイトイオンの 変化に対する結晶構造の移り変わりを明らか にしたい。

参考文献

1) K. Kohn, K. Inoue, O. Horie, S. Akimoto, J. Solid Stata Chem., **18** (1976) 27.