硬 X 線光電子分光法を用いた 窒化物半導体/金属界面の電子状態評価 II Evaluation for electronic states at the interface between nitride semiconductor and metals by using hard x-ray photoelectron spectroscopy II

<u>宮嶋孝夫</u>^a、新井龍志^a、細井 慎^a、越谷直樹^a、工藤喜弘^a、池永英司^b Takao Miyajima^a, Ryuji Arai^a, Shizuka Hosoi^a, Naoki Koshitani^a, Yoshihiro Kudo^a, and Eiji Ikenaga^b

^aソニー(株)先端マテリアル研究所、^b高輝度光科学研究センター

^a Advanced Materials Laboratories, Sony Corporation, ^b Japan Synchrotron Research Institute

n型 GaN:Si 上に蒸着した金属 Al, Ti, Au, Ni, Pd, Pt によって形成されるショットキー障壁高さを、 SPring-8の硬X線を用いた光電子分光法で求めた。その結果、得られた障壁高さは、金属の仕事関数 の大きさに対する増加関数となり、界面準位によるピニングは強く起きていないことが分かった。

Schottky barrier hights for Al, Ti, Au, Ni, Pd and Pt metals evaporated on n-type Si-doped GaN were determined by using hard x-ray photoelectron spectroscopy in SPring-8. The obtained values increase with the increasing of the work function of the metals. This means that Fermi level is not pinned at the interface between Si-doped GaN and metals.

<u>背景と目的</u>: 近年、GaN 系半導体を用いた 青色半導体レーザや青色及び緑色 LED が実 用化されたが、さらなる高出力化、高輝度化、 発光波長の短波長化、長波長化などを目指し て、活発な研究開発が行われている[1,2]。こ れらのデバイスの高機能化を行う場合、金属 /GaN、Ga_xIn_{1-x}N/GaN、Al_xGa_{1-x}N/GaN 等の 界面制御が非常に重要になる。界面の電子状 態を評価する有力手段として光電子分光法が あるが、表面敏感な測定手法であるために、 信頼性のある実験結果を得るためには、大気 開放せずに界面を形成する結晶成長と評価を 連続して行う必要がある。これに対して、 SPring-8 での光電子分光法では、表面から 10nm 程度のバルク情報を得ることができる。 なぜならば、高エネルギー高輝度のX線源を 用いることで、光電子の運動エネルギーを高 め、脱出深さを深くできるからである。ここ では、この実験系を用いることで、n型 GaN 上に蒸着した様々な金属に関するショットキ ー障壁高さを求め、オーミック電極形成のメ カニズムを考察した。

本研究の目的は、ナノメータ領域の窒化物

半導体/金属界面を詳しく解析することで、 電極のコンタクト抵抗を決定する要因を考察 し、GaN系発光デバイスの更なる高効率化を 促進しようというものである。GaN系光デバ イスは、可視域波長領域を広くカバーすると ともに、白熱電球や蛍光灯を凌駕する有力な 固体照明デバイスとして、その有用性が認め られ、国際的な開発競争が進められており、 ナノテクノロジー分野における研究として大 変重要である。

実験方法: 測定試料としては、有機金属 気相成長(MOCVD)法で成長した c 面サフ ァイア基板上の Si-doped GaN を用意し、その 上に、Al, Ti, Au, Ni, Pd, Pt の金属を厚さ 10nm 蒸着した。硬X線を用いた光電子分光測定は、 SPring-8のビームラインである BL47XUにお いて行った。図1に実験のレイアウトを示し た。SPring-8の挿入光源からの準白色放射光 X線を Si(111)単結晶で E=8keV のエネルギー に単色化。さらに、Si(333)単結晶によりエネ ルギー幅を 100meV 以下に狭めた後、鉛直及 び水平集光ダブルミラーにより2次元集光し た X 線を試料に照射。試料位置での X 線ビー ムサイズは $40 \times 40 \mu m^2$ 。これにより、試料か ら 放出 される 光電子のエネルギーを、 GAMMADATA-SCIENTA 製の R-4000 光電子 分光器で測定した。測定は、すべて室温で行 われた。

Fig.1 Schematic diagram of sample assembly

実験結果と考察: n型 GaN 上の金属のショ ットキー障壁高さは、金属の Fermi 準位と GaNの伝導帯端のエネルギー差により決定さ れる。しかしながら、金属蒸着をした Si-doped GaN 試料からは、金属の Fermi 準位からの光 電子が検出され、その運動エネルギーから E_F(metal)を求めることができるが、表面の金 属からの信号が重畳することから、GaN の価 電子帯端からの光電子の信号を明瞭に分離す ることができない。一方、Ga 3s の内殻準位 からの光電子は金属の影響を受けることなく 測定することが可能であり、その運動エネル ギー(E3s(Ga))は求められる。そこで、金属蒸 着をしていない Si-doped GaN より、価電子帯 端および Ga 3s の内殻準位からの光電子を測 定し、その運動エネルギー差 Ev(GaN)-E_{3s}'(Ga)を求め、下記の式より、ショットキー 障壁高さゅを見積った。

 $\phi = \mathrm{Eg} - [\mathrm{E}_{\mathrm{F}}(\mathrm{metal}) - \mathrm{E}_{3\mathrm{s}}(\mathrm{Ga})]$

 $-(E_V(GaN) - E_{3s}'(Ga))]$

図2に各金属から得られたショットキー障壁 高さと仕事関数との関係をプロットした。シ ョットキー障壁高さは金属の仕事関数に対す る増加関数となっていることから、金属/半導 体の界面準位によるフェルミ準位のピニング が強く起きていないと考えられる。したがっ て、本実験結果は、n型 GaN に対するオーミ ック接合のコンタクト比抵抗を下げるために は仕事関数のできるだけ小さな Ti や Al を使 うべきという考え方を強く支持するものとな る

Fig.2 The obtained schottky barrier heights are shown as a function of the work function of the metal.

<u>結論</u>: 表面の影響を受けにくい硬X線光電 子分光法を用いて、n型 GaN 上に厚さ 10nm の Al, Ti, Au, Ni, Pd, Pt 金属を蒸着した場合の ショットキー障壁を求めたところ、金属の仕 事関数に対して増加関数となることが分かっ た。このことは、界面準位によるフェルミ準 位のピニングが強く起きていないことを示し ている。

今後の課題: 本課題によって、SPring-8の 硬X線光電子分光測定法が、金属/GaN界面の 電子状態の解析に非常に有効であることが分 かった。前回及び今回の実験結果から、p型 及びn型GaNと金属接合界面の電子状態が測 定できたことから、GaNと金属接合界面を包 括的に考察し、GaN系発光デバイス及び電子 デバイスの特性向上に寄与する。

参考文献

Phys. 40, L963 (2007).

M. Ohta, Y. Ohizumi, Y. Hoshina, T. Tanaka, Y. Yabuki, K. Funato, S. Tomiya, S. Goto and M. Ikeda, phys. stat. sol. (a) **204**, 2068 (2007).
Y. Narukawa, M. Sano, M. Ichikawa, S. Minato, T. Sakamoto, T. Yamada and T. Mukai, Jpn. J. Appl.