構造制御による Ni ナノ粒子の水素吸蔵特性発現 Hydrogen Absorption in Ni Nanoparticles Induced by Structural Transformation

細井 浩平 ^a, <u>山内 美穂</u>^b, 北川 宏 ^a Kouhei Hosoi^a, Miho Yamauchi^b, Hiroshi Kitagawa^a

^a九州大学大学院理学研究院,^b北海道大学触媒化学研究センター ^aFaculty of Science, Kyushu University, ^bCatalysis Research Center, Hokkaido University

液相還元法により hcp 構造の Ni ナノ粒子を作製し、得られた粒子の水素圧力下における in situ 粉末 XRD 測定を行った。200℃で真空下においた試料は hcp 構造をとるが、水素圧力を 100 Torr 印加する と hcc 構造に由来する回折ピークが観測された。水素圧力を増加すると fcc 構造のピーク強度が増加 して、760 Torr では、ほぼ fcc 構造の Ni ナノ粒子に変換することが明らかとなった。

The hcp type Ni nanoparticles were prepared by chemical reduction in solution phases. The XRD patterns of the samples under hydrogen pressure were measured. The Ni nanoparticles heated to 200°C without hydrogen gas showed the patterns of only hcp phase. Under 100 Torr of hydrogen, diffraction peaks of the fcc phase appeared. The intensity of the diffraction from fcc lattice increased with hydrogen pressure, and the pattern was changed to the pattern of almost pure fcc phase under 760 Torr.

キーワード:hcp-Ni、fcc-Ni、水素吸蔵、粉末 X 線回折

背景と研究目的: バルクのニッケル(Ni)の 構造は室温では fcc 構造が最も安定であり、 強磁性を示すことが知られている。また、後 周期遷移金属としては、Pd 以外で水素吸蔵特 性を示す金属でもあり、Pd は室温で非常に低 圧(数十 Torr)の水素ガスと反応して水素化 物を生成して水素吸蔵特性を示すのに対して、 Ni は室温では 6000 気圧の高圧の水素と反応 して水素化物を生じることが知られている。 水素化物生成は水素の高圧力を必要とするが、 水素分子を解離する高い触媒能力を有するこ とから、水素吸蔵合金の吸蔵条件を改善する ために、表面を被覆したり、水素吸蔵合金の 構成金属として用いられる。我々は、液相に おける化学的還元法により、hcp 構造の Ni ナ ノ粒子を得ることに成功した。hcp 構造の Ni(hcp-Ni)については、薄膜を約 350℃以上に した場合に得られることが知られており、そ の物性についてはほとんど知られていない。 本研究では、hcp-Ni ナノ粒子の水素圧力下に おける in situ 粉末 XRD 回折を測定すること により水素圧力下の hcp-Ni ナノ粒子の構造 を詳細に調べ、hcp-Ni ナノ粒子と水素との反 応性を解明することを目的とする。

予備実験として、液相還元法により作製したhcp構造が主成分であるNiナノ粒子(fcc-およびhcp-Niナノ粒子の混合物)について水 素ガスとともにキャピラリーに充填した試料 の粉末X線回折を測定したところ、水素とと もに473Kにおいた試料では、hcpからfcc 構造への構造転移が観測された。この水素ガ ス印加による構造変化はhcp-Niナノ粒子の 特異な性質であると考えることが出来るが、 fcc-とhcp-Niが一粒子内にが混在する場合、 水素により粒子内の構造が均一した結果であ る可能性がもある。そこで、今回の実験では、 hcp構造のみのNiナノ粒子を作製し、水素圧 力を印加しながらのhcp-Niナノ粒子の構造 変化を調べることを主眼とする。

実験: Niナノ粒子の粒径制御のために、ポ リ[*N*-ビニル-2-ピロリドン] (以後PVPと略 す)を保護剤として用いた。多価アルコール を溶媒として、ナノ粒子を作製した。

SPring-8のBL02B2において、このNiナノ粒 子の水素圧力下in situ粉末X線回折測定を行 った。波長は0.55312Å、測定温度は200度と した。

結果、および、考察: 得られた試料の粉末 X線回折を Bruker 社製 D8 ADVANCE を用い て測定したところ、合成条件によっては、す べてhcp構造のNiナノ粒子が生成することが 明らかとなった。

透過型電子顕微鏡観察の結果を fig. 1 に示 す。得られた hcp-Ni ナノ粒子は球状であり、 その平均の直径 34 nm 程度であることがわか った。

In situ 粉末 XRD 回折パターンを Fig. 2 に 示す。200℃にて真空下においた試料は、hcp 構造の格子からの回折に特徴的な 010,002, 011 の指数をもつ回折ピークのみが観測され たことから、200℃の加温のみでは構造は作製 した状態のままであることがわかった。次に、 100 Torr の水素を印加すると、hcp 格子の 010, 002,011の指数をもつ回折強度が減少し、fcc 構造からの 111 および 002 の指数で特徴づけ られるピークが出現した。さらに水素圧力を 増加すると fcc 格子に由来する回折強度が増 加し、水素が 760 Torr では、ほぼ純粋な fcc 格子からの回折パターンに変化した。このこ とから、hcp 構造の Ni ナノ粒子は 200℃にお いて、水素ガスと反応して、その構造を fcc 構造へ変化させることが初めて明らかとなっ た。

hcp-Niナノ粒子を水素印加前後での磁性の 違いを見るために、ガラスのサンプル管に封 入した試料を室温にてネオジウム磁石に近づ けてその様子を肉眼にて観測した。水素印加 前の試料には磁石に近づけても何の変化も観 られなかったが、水素圧力印加後の試料は磁 石に引き寄せられることがわかった。このこ とから、室温において hcp-Niナノ粒子は強磁 性を示さないが、200℃で水素に触れた試料は fcc 構造をとり、室温強磁性体となることが明 らかとなった。

この結果から、hcp-Ni ナノ粒子は、200℃ において、1 気圧程度の低圧で水素を格子内 部に取りこみ、構造を変化させると推測され、 通常、バルクでは数千気圧もの高圧下でのみ、 水素吸蔵しない Ni がナノ粒子は低圧力で水 素吸蔵することが期待される。

今後の課題: hcp 構造の Ni ナノ粒子は水素 ガスと反応して fcc 構造へと変化し、磁気的

Fig. 1. TEM image of hcp-type Ni nanoparticles.

Fig. 2. In situ powder XRD pattern of hcp type Ni nanoparticles measured at 200° C.

性質を変化させることが明らかとなったが、 その逆変換は達成していない。ナノ粒子はサ イズが小さくなると構造揺らぎが大きくなる ことが知られている。もし、小粒径の Ni ナノ 粒子を作製できれば、水素印加の条件や熱処 理の条件で、構造と磁性を可逆変換が達成さ れる可能性がある。今後、より小粒径の Ni ナノ粒子の作製に取り組み、構造変化の条件 について詳細な研究を行うつもりである。

参考文献

G. P. Thomson, Nature, **123** (1929) 912.
C. N. Chinnasamy, B. Jeyadevan, K. Shinoda, K. Tohji, A. Narayanasamy, K. Sato, S. Hisano, J. Appl. Phys., **97** (2005) 10J309.