ビットパターン型次世代超高密度磁気記録材料 FePtRh 薄膜の強磁性-反 強磁性相転移に伴う Pt の磁気モーメントの挙動に関する研究

Behavior of magnetic moment for Pt atom in FePtRh thin film accompanied with ferro-antiferro magnetic phase transition for next generation bit patterned media

<u>有明 順</u>^a, 近藤 祐治^a, 千葉 隆^a, 長谷川 崇^b, 石尾 俊二^b, 鈴木 基寬^c, 河村 直己^c Jun Ariake^a, Yuji Kondo^a, Takashi Chiba^a, Tahashi Hasegawa^b, Shunji Ishio^b, Motohiro Suzuki^c, Naomi Kawamura^c

^a秋田県産業技術総合研究センター,^b秋田大学, [°]高輝度光科学研究センター ^aAkita Pref. R&D center, ^bAkita Univ., [°]JASRI

 $Fe_{50}(Pt_{1-x}Rh_x)_{50}$ の組成を x=0~0.4 まで変えた試料について、Pt L_3 吸収端における XMCD 測定を行なった. XMCD 強度の Rh 組成比依存性において、x=0.32~0.34 で XMCD 強度が急減して強磁性-反強磁性相転移が存在することがわかった.また、M-T 曲線の測定から、x=0.30 に対して 270 K、x=0.32 に対して 250 K に極大点が現れ、反強磁性の存在を裏付ける結果が得られた.さらに相転移温度以下の ESMH 曲線では強磁性的振舞と反強磁性的振舞が混在しており、これは膜面内で組成分布が存在することを示唆している.

We measured x-ray magnetic circular dichroism (XMCD) at Pt L_3 edge for Fe₅₀(Pt_{1-x}Rh_x)₅₀ with x=0~0.4. The XMCD intensity decreased dramatically at x=0.32~0.34. Therefore, it was clarified to transit ferromagnetism to antiferromagnetism at the Rh composition. M-T curves have the maximum around 270 K and 250 K for x=0.30 and x=0.32, respectively. This result supports the existence of antiferromagnetic phase in these films. Below transition temperature, ESMH curves represent behaviors of both ferromagnetism and antiferromagnetism. This suggests the distribution of composition in plane of film.

キーワード: 強磁性-反強磁性相転移, ビットパターン媒体, X線磁気円二色性

背景と研究目的:現状のグラニュラ型磁気記録 媒体に代わり、より熱安定性に優れた媒体とし てビットパターン型媒体(BPM)が有力視されて いる[1]. より高密度な BPM を実現する作製プ ロセスとして,従来の微細加工プロセスに頼ら ない方法が必要になると考えられる. そこで, 我々はL10-FePtRh系合金における強磁性-反強 磁性相転移を用いた BPM を提案してきた. FePtRh 系合金の状態図によると、Pt と Rh の組 成比を変化させると、Fe₅₀(Pt_{0.75}Rh_{0.25})₅₀組成付 近において急激に強磁性-反強磁性相転移する 点が存在する.この磁気的な特徴を用いれば, 反強磁性を示す組成の FePtRh 薄膜中にナノメ ートルサイズで局所的に急激な濃度勾配を作る ことで、その領域のみを強磁性相に相転移させ て BPM を作製できる.この BPM では,濃度勾 配の特定組成の位置でビット境界が決まるため に,従来の微細加工での精度よりもはるかに高 い精度でビット境界を作製できる可能性がある. しかし、FePtRh 系合金の研究例の多くはバルク についてであり[2], 薄膜でのものはほとんどな

い.そこで、本課題では元素選択的に感度良く 測定できる XMCD 測定を用いて、FePtRh 系薄 膜の強磁性-反強磁性相転移に伴う Pt の磁気 モーメントの変化を調べることを目的とした.

実験: $L1_0$ -FePtRh 薄膜は, 熱酸化 Si 基板上にマ グネトロンスパッタにより Fe, Pt, Rh を交互 に積層させた後に, 急速昇温加熱により熱処理 することで作製した. Pt と Rh の組成比は Pt と Rh の膜厚を変えることで制御した. 今回作製し た試料は Fe₅₀(Pt_{1-x}Rh_x)₅₀で組成は x=0, 0.12, 0.14, 0.22, 0.30, 0.32, 0.34, 0.40 である.

XMCD 測定は BL39XU で Pt $L_{2,3}$ 端において 蛍光法により行った. 蛍光 X 線の検出にはシリ コンドリフト検出器を用いた. 試料には超伝導 磁石により最大 10 T の磁場を印加した. また, 測定温度は 4.5 ~ 315 K と変化させた.

結果と考察: Fig. 1 に室温付近における Pt *L*₃ 端での XMCD 強度の Rh 組成比依存性を示す. 縦軸は吸収スペクトルの white ラインで規格化

Fig. 1. Dependence of Rh composition for XMCD intensity at Pt L_3 edge.

Fig. 2. Temperature dependence of normalized XMCD amplitude for $Fe_{50}(Pt_{1-x}Rh_x)_{50}$ thin films with (a) x=0.30 (red symbol) and (b) x= 0.32 (blue symbol).

Fig. 3. ESMH curves for $Fe_{50}(Pt_{1-x}Rh_x)_{50}$ thin films with x= 0.30, 0.32, 0.34 and 0.40. Red and blue lines show ESMH curves measured at T=286 K and 4.5 K, respectively.

したものである. この結果から, x=0.32~0.34 に明らかな XMCD 強度の急激な変化が見られ る. そこで, 相転移点付近である x=0.30 および 0.32 における M-T 曲線の実験結果を Fig. 2 に示

す. 図より、x=0.30 では 270 K 付近に、x=0.32 では 250 K 付近に反強磁性に特徴的な帯磁率の 極大を示す相転移温度が存在することがわかる. 次に Fig. 3 に相転移点付近の組成比における元 素選択磁化(ESMH)曲線を示す.この結果から、 x=0.30 および 0.32 では室温と低温において ESMH 曲線に明らかな違いがみられた. Fig .2 の結果も考慮すると,相転移温度以下の低温に おける ESMH 曲線は反強磁性のものと考えら れるが,弱磁場領域にヒステリシスが現われた. これは試料面内で組成分布が存在し、局所的に 強磁性を発現する組成比の領域が存在している と考えられる. 相転移温度以上の室温では ESMH 曲線は強磁性的な振舞いをしていること がわかる.これらの結果から, x=0.30 および 0.32 では相転移温度を境界にして反強磁性-強磁性 転移を起こすことがわかった.一方で, x>0.34 では室温,低温ともに類似した ESMH 曲線を示 し、帯磁率は低い. つまり、低温~室温領域で は反強磁性を示すことが明らかになった.

今後の予定: FePtRh 系薄膜の強磁性-反強磁 性相転移を用いたドットアレイの作製プロセス を開発し,その磁気特性を評価する予定である.

謝辞: 本研究は科学技術振興機構(JST)重点地 域研究開発推進プログラム(育成研究)の補助を 受けて実施されたものである.

参考文献

1) R. L. White, R. M. H. New, R. F. W Pease, *IEEE*. *Trans. Magn.*, **33** (1997) 990.

2) S. Yuasa, H. Miyajima, J. Magn. Soc. Jpn., 21 (1997) 122.