2000Bに採択され2003Aに終了した長期利用課題の研究紹介(1)

財団法人高輝度光科学研究センター 利用業務部

2000B期(平成12年9月~平成13年1月)から特 定利用課題(現:長期利用課題)として採択しまし た3課題につきましては、2003A期(平成15年2月 ~平成15年7月)で終了し、それぞれの課題の事後 評価が実施され、その評価結果、成果リストについ ては、前回利用者情報誌(Vol.9, No.2)に掲載い たしました。

今号では、3課題のうち、2課題の研究内容につ いて紹介いたします。なお、[課題名]:硬X線マイ クロビームを用いる顕微分光法の開発につきまして は、次回利用者情報7月号(Vol.9, No.4)に掲載 いたします。

超臨界金属流体の構造研究 隠されていたもうひとつのゆらぎ [特定利用課題(現:長期利用課題)(2000B-2003A)]

京都大学 工学研究科 田村 剛三郎

特定利用課題採択名称

- [課題名]: 超臨界金属流体の静的・動的構造の解明
- [実験責任者]:田村 剛三郎(京都大学)

[採択時の課題番号]:

2000B0020-LD-np(BL04B1, BL28B2) 2000B0583-LD-np(BL04B2) 2001B3607-LD-np(BL35XU)

[実施BL / 総シフト数]:

BL04B1 計 72シフト(2000B~2001B) BL28B2 計 72シフト(2002A~2003A) BL04B2 計 174シフト(2000B~2003A) BL35XU 計 144シフト(2001B~2003A) 総計 462シフト 1.はじめに

超臨界流体が、ダイオキシン等の環境汚染物質を 容易に分解するというので、脚光を浴びている。あ る高圧機器メーカーの超臨界装置がベンチャー支援 の対象になったという記事が新聞に出ていたり、別 のメーカーは独自の超臨界装置を開発し、これが大 いに販路を拡げ不況を乗り切る原動力になっている という話も聞く。このように、超臨界流体の有用性 に着目した研究がますます盛んであることは大変に 喜ばしいことである。しかしながらここでは、役に 立つ超臨界流体というイメージから離れて、少し違 った角度からこの特異な物質を眺めてみたい。

超臨界流体とは何か。水を例にとればわかるよう に、圧力を加えていくと沸点は上昇する。さらに圧

図1 相図

力を上げると沸点は上昇し続けるが、ある臨界圧力 以上になるともはや沸騰が見られなくなり、液体と も気体とも区別のつかない超臨界流体と呼ばれる特 異な状態が出現する。図1は、温度と圧力の平面上 に固体、液体、気体の三相を表わしたものである。 液体と気体の境界線が途切れるところに臨界点があ り、その向こうに超臨界領域が広がる。ここで、矢 印のように臨界点を迂回すると、液体から気体へと 体積を連続的に、しかも千倍以上も膨張させること が可能になる。このことは平均原子間距離を十倍以 上拡げることに相当する。物質に圧力を加え体積を 収縮させることはできても、一様に膨張させること

は容易でない。体積膨張が可能であ ること、これが超臨界流体の第一の 特徴である。金属流体の場合には、 この体積膨張過程で物性が大きく変 化し、絶縁体へと転移する^[1]。

原子や分子が凝縮して金属になる とき、どのような過程を経て金属に なるのか、逆の見方をすれば、金属 はどのように膨張・解離して絶縁体 になるのか。これは、物質科学にお ける最も基本的な問いである。この 問いに答えるのに、超臨界金属流体 は格好の場を提供する。

我々は、これまで3年間、 SPring-8の特定(長期)利用課題 「超臨界金属流体の静的・動的構造 の解明」を進めてきた。この研究計 画は、代表的な液体金属である水銀、 単体として唯一液体状態で半導体と して振舞うセレン、さらにアルカリ 金属ルビジウムを対象とし、X線回 折測定により短・中距離構造につい て、X線小角散乱測定により密度の ゆらぎ等の長距離構造について、さ らにX線非弾性散乱測定によりダイ ナミクス、すなわち原子分子の離合 集散の様相を明らかにするものであ る。本稿では、特定利用課題終了に あたり、これまでに得られた成果を 紹介し、体積膨張に伴って金属から 絶縁体へ転移するとき原子配列や動 的振舞いに何が起こるかについて考 える。

2. 高圧容器の開発

流体水銀、セレン、ルビジウムの臨界温度と圧力 は、それぞれ、Hg(1478 、1673bar)、Se(1615 、 385bar)、Rb(1744 、124.5bar)であり、アルゴン や炭酸ガスのものに比べて非常に高い。このため、 高圧容器、試料容器などの実験装置には特別の工夫 が必要である。我々は、1700 、ヘリウムガス圧縮 による2000barまでの高温高圧下で放射光実験が可 能な内熱型高圧容器を開発し、X線回折、X線小角 散乱、X線非弾性散乱用に異なる3種類の高圧容器 を製作した。高圧ガスの取り扱いに関する国(高圧

図2 ビームラインBL28B2ハッチ内の写真

ガス保安協会)の特別認可を得て、これらの装置を SPring-8の3つのビームラインBL04B1(BL28B2) BL04B2、BL35XUに設置し、実験を行った。世界に ある第三世代大型放射光施設の中で、SPring-8のビー ムラインは、超臨界金属流体の静的・動的構造研究 が可能な唯一のビームラインである。

図2は、X線回折測定用のビームラインBL28B2 のハッチ内の写真を示す。ここで白色X線を用いた エネルギー分散型X線回折測定を行った。図3は、 1700 、2000barまで測定可能な内熱型高圧容器の 側面図(a)および上面図(b)を示す。高圧容器は上下 のフランジとシリンダーからなる。高圧容器中央に はサファイア製の試料容器に入れた水銀試料が置か れている。左側にあるBe製の高圧窓を通して白色 X線を高圧容器内に導入し、試料により散乱された X線を右側の7つ高圧窓から取り出し、半導体検出 器を用いてエネルギー波高分析を行う。水銀を入れ る試料容器は、高温の試料との反応性に耐え、かつ X線に対して十分透明であるものでなければならな い。このために我々は、0.15mmの厚さまで薄く研磨 したサファイア壁の間に、数十ミクロンの厚さの試 料薄膜を安定に保持できるサファイア製試料容器を 開発した。この高圧容器とサファイア容器を用いる ことにより超臨界金属流体の構造研究が可能になっ た^[2,3]。

図4は、ビームラインBL04B2におけるX線小角

(top view)

beam stopper

sample

(b)

5 cm

(side view)

図3 X線回折用高圧容器の側面図(a)および上面図(b)

diamond windows

図4 X線小角散乱用高圧容器の上面図

図5 X線非弾性散乱用高圧容器の上面図

散乱実験用高圧容器の上面図を示す。 X 線回折用の 高圧容器と違っている点は、高圧窓からの小角散乱 の影響を除去するために、X線の入口、出口窓とし てベリリウムの代わりに円柱形に加工した高純度人 エダイヤモンド(入口側:直径3mm、厚さ2mm、出 口側:直径6mm、厚さ2.5mm)を用いていることで ある。X 線源として38KeVの高エネルギー単色X線 を用いた。

図5は、ビームラインBL35XUにおけるX線非弾 性散乱用高圧容器の上面図を示す。複数の入射X線 用ベリリウム窓と散乱X線を取り出すための複数の ベリリウム窓を組み合わせることにより、散乱ベク トルを選択することができる。散乱ベクトルを連続 的に変えることのできる大きな窓を設置することが 望ましいが、2000barのガス圧下では技術的に容易 ではない。また、国の特別認可を得ることが難しい。

3. 流体水銀

X線回折測定を行い^[4,5]、液体から超臨界領域を 経て気体にいたる広い密度領域(13.6~1.9gcm³) において、完成度の高い構造因子S(Q)と二体分布 関数g(r)を得ることができた^[6]。図6は、流体水 銀のg(r)を示す。矢印は、金属-非金属転移が始ま る9gcm³と臨界密度5.8gcm³を示す。g(r)を解析す ることによって得た配位数 N_A 、 $N_B \ge g(r)$ の第一極大 位置r,を密度に対してプロットしたものを図7に 示す。 $N_A \ge N_B$ の違いは、 N_A は最近接原子分布の中 でもより近接位置にある原子の配位数を表し、 N_B はできるだけ広く原子を数えたことに相当する。 N_B は、液体から気体まで広い密度範囲にわたり大 きくしかも原点に向かって直線的に減少している。 この変化から、水銀が体積膨張するとき、原子間距 離が増大するのではなく配位数が減少することが分 かる。このことは、結晶の熱膨張と大きく異なる点 である。液体の場合には、結晶性による拘束がない ため、配置のエントロピーを増加させるべく空孔を 生成しながら膨張すると考えることができる。しか し、近い方、すなわちN_Aは、金属領域においてほ とんど直線的に減少するが、金属 - 非金属転移の始 まる9gcm³あたりに近づくと直線からずれ、ほぼ一 定値をとるようになる。さらに臨界密度を超えて気 体領域に入ると、再び減少し始める。このN_Aの変 化は r₄の密度変化とよく符合しており、最近接原 子分布の中でもより近接位置にある原子数の減少

図8 g(r)のガウスフィット

図7 流体水銀の配位数N_A、N_Bとg(r)の第一極大位置r₄の密度変化

が、金属 - 非金属転移に大きく関っていることが分かる。

図8は、g(r)の第一極大の非対称性に着目して2 つのガウス関数でフィットしたものであるが、金 属-非金属転移の始まる9gcm³まで、近接位置にあ る原子の数が選択的に減少し、遠い方(影をつけた 部分)の原子数は変わらない。また、詳細に調べた 結果、ガウス関数の半値幅が9gcm³付近から増大す ることが分かった^[6]。このことは、金属・非金属転 移に伴って配位数のゆらぎが存在することを示唆す る。

次に、X線小角散乱測定を行い、臨界散乱の観測 に初めて成功した^[7:9]。図9は、一例として、 1750barの一定圧力下で温度を変えることによって 密度を変化させて得た最新の小角散乱スペクトルを 示す。臨界密度5.8gcm⁻³付近で臨界散乱が生じてい ることがわかる。これらの小角散乱スペクトルから、 Ornstein-Zernikeの密度ゆらぎの式を用いて解析 し、密度ゆらぎの大きさS(0)と相関長 を求めるこ とができる。図10は、臨界点から遠い1940barの一 定圧力下および臨界点に近い1750barの圧力下で得

図10 流体水銀の密度ゆらぎの大きさ*S*(0)とゆらぎの 相関長 の密度変化

図11 流体水銀の c の密度変化

208 SPring-8 Information / Vol.9 No.3 MAY 2004

たS(0)(四角)と(黒丸)を密度に対してプロット したものである。S(0)は、臨界密度付近にピークが あり、ほぼ対称的な形をしているが、 は半値幅が 大きく、液体側に大きくすそを引いているのが特徴 的である。S(0)との形の違いは、臨界点から離れ た1940barのデータにおいて著しい。水やCO_のよ うな流体では、臨界点に近づくに従ってS(0)もも 大きくなり、共に臨界密度で極大を示し、ほぼ対称 的な形をしており半値幅もほぼ同じである。これに 対し、流体水銀では、密度9gcm³付近おいてS(0)が 小さいにもかかわらず の方には10 程度の値が残 っていることが大きな特徴である。このことは、金 属 - 非金属転移領域において、臨界密度ゆらぎとは 異なる新しいタイプのゆらぎ、中距離スケールの弱 いゆらぎが存在することを示唆する。このことを詳 しく見るために、液体構造論で重要な直接相関関数 のフーリエ変換を波数のべきで展開したときの二次 の係数 c_が - 2/ S(0)で表されることに着目し、 図10のS(0)と を用いて c,を計算してみた。 c,の 絶対値の密度変化を図11に示す。図10の二つの圧力 下でのS(0)と を比べてみて分かるように、形も値 も大きく違っている。それにもかかわらず、図11の c,の振る舞いは、臨界点から遠い場合(黒丸)と 近い場合(四角)で極めてよく一致している。さら に興味深いことは、臨界密度5.8gcm³付近では特段 何も起こらず、金属 非金属転移の起きる9gcm³付 近で極大が見られることである。流体アルゴンの場 合、Ornstein-Zernikeプロットの傾き(= 2/S(0)) は、臨界点に近づいてもほとんど変わらないことが 知られている^[10]。このことは、直接相関関数が臨 界領域においても短距離範囲にしかおよばないこと をよく表している「10」。流体水銀の場合、水銀原子 が閉殻電子配置をしているため、低密度領域で希ガ ス的であると考えられてきた。水銀の臨界密度ゆら ぎが、気体と非金属液体の間のゆらぎであると考え ると、臨界領域における流体アルゴンのようにc。 がスムーズな変化をしても不思議ではない。破線は、 比較のために ²/ S(0)が一定であるとして c 。をプ ロットしたものである。すなわち、直接相関関数が 密度変化をしない、例えば、高密度領域まで同じ Lennard-Jones ポテンシャルが使えるとしてプロッ トしたことに相当する。図のように、密度の増加に 伴い c ,が破線からずれ、9gcm⁻³付近で極大を示す ことは、金属-非金属転移領域において直接相関関 数が低密度領域のものと大きく違っていることを示

している。このような c₂にお ける異常な振る舞いが、金 属 - 非金属転移に伴うゆらぎ が特異なものであることを明 瞭に表している。このゆらぎ は、臨界密度ゆらぎとは独立 の、まさに金属 - 非金属転移 の本質に関わるゆらぎである。

それでは一体、どのような ゆらぎが生じているのか。臨 界点近くでは、液体と気体の 臨界密度ゆらぎを直接反映し て、X線が見る電子密度分布 には、密な領域と疎な領域で 明瞭な違いが現れる。一方、 金属 非金属転移が起きる密 度では、電子が局在する領域 と非局在領域との間では電子

図12 金属 非金属転移領域における -Q分散関係と静的構造因子S(Q)

密度に大きな差異はないであろう。臨界密度ゆらぎ の密な領域を黒で塗り、疎な領域を白で表すとする と、金属-非金属転移領域のゆらぎは、いわば、濃 いめの灰色(金属領域)と薄めの灰色(非金属領域) とで塗り分けられた薄墨模様をイメージすることが できる。

次に、X線非弾性散乱の結果について述べる。広 い密度範囲、すなわち液体金属領域、超臨界領域、 気体領域における動的構造因子S(Q))を初めて得る ことができ¹⁹¹、これをもとに各領域において分散関

係を求めることができた。液体金 属領域では、金属-非金属転移に伴 うfast sound mode の発見「!」、超 臨界領域では、臨界密度ゆらぎに よる臨界遅延の観測、さらに気体 領域では、高密度気体に残存する 集団モードの観測「12」など新しい 事実が見出された。

図12は、金属領域の密度13.6gcm³ および金属 - 非金属転移の始まる 9gcm³での分散関係を示す^[11]。四 角印は、*S*(*Q*,)をモデル関数で フィットして求めた励起エネルギ ーを表し、一点鎖線は超音波測定 から求めた音速の外挿線を示す ^[13]。点線は、*Q*の小さい側の分散 関係を延長したもので、その傾き から音速を見積もることができる。上段の図の実線 はX線回折測定から求めた*S*(*Q*)、黒丸は*S*(*Q*,)を

で積分して得たS(Q)を表し、両者はよく一致して いる。密度13.6gcm³において、分散関係から見積も った音速は1700m/sであり、超音波測定から求めた 音速に比べ17%程度速い。一方、9gcm³では、分散 関係からの音速は1500m/sであり、超音波による音 速490m/sに比べると3倍以上も速いという大変興 味深い事実が判明した。

図13は、分散関係から見積もった音速(ミクロな

図13 分散関係から求めた音速(四角)と超音波測定による音速^[13] (破線)の密度変化

音速、四角印)と超音波測定から求めた音速¹¹³¹(マ クロな音速、破線)を密度に対してプロットしたも のである。

図13から明らかなように、金属-非金属転移の始ま る9gcm³付近で、ミクロな音速とマクロな音速の間 に著しい違いが生じていることが分かる。金属-非金 属転移領域において、なぜこのような速い音速 (fast sound)が観測されるのであろうか。音速は、断熱圧 縮率の平方根に逆比例する。Qが0.2から0.4 1の範 囲、すなわち10~30の空間スケールに出現した速 い音速の存在は、ミクロな断熱圧縮率が小さいこと を意味する。このことは、ミクロな圧力のゆらぎが 大きいことを意味する。また、圧力は二体ポテンシ ャル、特に斥力部分の形に依存するので、圧力のゆ らぎが大きいことはポテンシャルのゆらぎが大きい ことを意味する。それでは、なぜポテンシャルがゆ らぐのか。X線小角散乱の実験から、金属-非金属 転移領域において10 程度の相関長をもつゆらぎの 存在、すなわち10 程度のスケールをもつ金属領域 と非金属領域との間の空間的ゆらぎが起きているこ とが明らかになった。これらの領域は時間的にもゆ らいでおり、金属領域は非金属領域へ、非金属領域 は金属領域へと時々刻々入れ替わっているであろ う。入れ替わりの周期あるいは緩和時間を正確に求 めることは難しいが、S(Q.)の形から推定すると、 その時間は1psあるいはそれより短いと考えられる。 ある瞬間に、金属領域の水銀は伝導電子に遮蔽され たクーロンポテンシャルを感じるが、次の瞬間には、 金属でなくなった領域の中でいわば Lennard-Jones ポテンシャルのような希ガス的ポテンシャルを感じ ることになるであろう。このように、ポテンシャル のゆらぎは、金属-非金属転移に伴うゆらぎに関係 する。また、圧力のゆらぎは、金属領域と非金属領 域とが入れ替わることにより10 程度の空間で発生 する。このように、fast sound は、金属-非金属転 移に伴う水銀特有のゆらぎが原因で生じたものであ る。

3つのビームラインを横断的に利用することによって、臨界密度ゆらぎ以外の、もうひとつのゆらぎ を発見することができた。それは、金属-非金属転 移に関わる非常に特異なゆらぎであり、隠されてい たゆらぎである。

そもそもなぜそのようなゆらぎが発生するのか。 X線回折の結果で見たように、水銀が膨張するとき、 配置のエントロピーを増すように配位数を減らす。 さらに詳細に見ると、体積膨張と共に、最近接原子 配置のうち遠い方の配位数は変わらず、近い方が選 択的に減少してゆく。しかし、そのような構造変化 がいつまでも持続するはずはなく、いずれ破綻をき たし、ミクロ構造の不安定性が発生するであろう。 遠い方に位置している原子が近い方に移動したり、 再び元の位置に戻ったりして、配位数のゆらぎとし て構造不安定性が現れると考えることができる。 Franz^[14]は、配位数が3まで減少すると局所的に バンドギャップが現れ、この非金属状態は近隣に波 及伝播すること、配位数が4になると金属的状態が 現れ、それがまた近隣に波及伝播することを理論的 に示した。この考え方に従えば、配位数のゆらぎは、 金属領域と非金属領域との間のゆらぎを誘起するこ とになる。水銀は配位数を減らしながらも金属状態 をなんとか保持してゆくが、9gcm³まで膨張すると それまでになかったミクロ構造の不安定性が発生 し、この構造不安定性が絶縁体への転移の引き金に なっていると考えられる。このゆらぎは、金属 非 金属転移に伴って生ずるゆらぎであるという言い方 は適当ではなく、まさに金属 - 非金属転移を引き起 こすゆらぎである。また、流体水銀の金属 - 非金属 転移が臨界点で起こらず臨界密度5.8gcm³よりはる かに密度の高い9gcm³で生じるのはなぜか、さらに 金属 - 非金属転移が臨界密度ゆらぎと関係するのか どうかという疑問があった。実験結果に基づいたひ とつの答えは、配位数を減らしながら膨張してゆき、 結晶における一次相転移の前駆現象のようにある段 階で必ずミクロ構造の不安定性が生じるが、その際、 構造不安定性がどの段階で生じるかは物質によって 異なり、融点近傍における液体の構造と電子状態の 特徴によって決まるという考え方である。水銀の場 合には、固体水銀の特異な最近接原子配置、すなわ ち最近接配置の中に近い部分と遠い部分があるとい う特徴が液体になっても残っている⁶¹ことが、9gcm³ という密度において金属 - 非金属転移が起きる元々 の原因であると考えられる。流体水銀の金属 - 非金 属転移は、臨界密度ゆらぎとは相関をもたない。

以上、X線回折、X線小角散乱、X線非弾性散乱 の測定により、当該分野共通の課題である流体水銀 の金属-非金属転移の機構について、詳細なシナリ オと言えないまでも、ピコ秒と数十の時間空間ス ケールでのあらすじは出来上がったと考えている。 今後、小角および広角領域において得られた精度の 高い構造因子をもとに、より精緻なRMCシミュレ

最近の研究から

ーションを行い、実空間におけるゆらぎ の特徴を抽出する予定である。

4. 流体セレン

X線回折測定を行い[^{15,16]}、液体から気体に至る広い密度範囲で完成度の高い *S*(*Q*)と*g*(*r*)を得ることができた^[17]。図 14に流体セレンの*g*(*r*)を示す。

融点直上の液体セレンは2配位鎖状構 造を持つ半導体である。1本の鎖には10 万個のセレン原子が含まれるが、温度と 圧力の増加と共に鎖は短くなり、臨界点 近傍では10原子程度の短い鎖になる。こ のとき金属へ転移する。この半導体-金 属転移に伴うミクロ構造の変化について 明確な知見が得られた。すなわち、従来 の予想のように3配位構造に変化するの ではなく、2配位構造を保ったまま金属 化し、共有結合距離はむしろ短くなる。 さらに、気体中にセレン2原子分子が存 在することを、X線回折測定法を用いて 初めて実証することができた。このこと を利用して、気体から超臨界金属流体へ と凝集してゆく過程での回折パターンの 変化を追跡することに成功し、セレン2原子分子が 金属的性質をもつ短い鎖へと変化してゆく様子を捉 えることができた。

次に、X線小角散乱測定を行い、臨界散乱を観測 することに初めて成功した[7,8,17]。図15は、最新の データを解析し、臨界点近傍の異なる温度における S(0)と を密度に対してプロットしたものである。 臨界密度1.85gcm³近傍にS(0)との極大があり、温 度が下がり臨界温度(1615)に近づくとピークが 大きくなっていることが分かる。また、本小角散乱 実験により初めて、半導体・金属転移に伴う弱い密 度ゆらぎを観測することができた(図16)。図16に おいて、密度の大きい所は鎖状高分子構造をもつ半 導体領域に対応するが、密度が減少し、約3.3gcm³ になったところで金属化が始まる。ちょうど金属化 が始まる密度で、S(0)と が増大し始めることが分 には、密度が2.9から3.3gcm³の間で かる。また、 上に凸の傾向が現れている。これらのことは、流体 セレンの中に、臨界密度ゆらぎとは違った、半導 体-金属転移に伴う中距離スケールの弱いゆらぎが 存在することを意味する。

図14 流体セレンの二体分布関数 g(r)

図15 流体セレンの超臨界領域における密度ゆらぎの 大きさ*S*(0)とゆらぎの相関長の密度変化

図16 流体セレンの半導体 金属転移領域における密度 ゆらぎの大きさS(0)とゆらぎの相関長 の密度変化 金属中に出現したRb。は、気体中に存在する安定な ものとは異なり、伝導電子による遮蔽を受けて不安 定で寿命の短い分子であると考えられる。何故この ようなRb」が現れるのか。流体ルビジウムの場合に も、水銀のように体積膨張に伴って配位数が減少す るが、この特異な液体中のRb。もやはり、配位数の 減少に伴う構造不安定性によって生じたものであ り、また、構造不安定性が起こるのは、融点での液 体ルビジウムの構造、さらには、固体ルビジウムが b c c という疎な構造をとるということに原因があ ると考えている。そこでは、中距離スケールのゆら ぎが発生している可能性がある。どのようなゆらぎ が生じているか、ゆらぎの空間的・時間的振舞いを 調べることは大変興味深い(ごく最近X線小角散乱 の実験に成功し、現在データ解析を行っているとこ ろである)。流体ルビジウムの構造研究は、これま で単純金属であると考えられてきたアルカリ金属に 対する視点を大きく変えるであろう。

最近、米国のWeirらによる水素分子の爆縮実験 により、3000K、1.4Mbarという超高温超高圧下で、 水素が金属(流体金属水素)になることが明らかに

5. 流体ルビジウム

水銀やセレンの実験に用いてきたサ ファイア試料容器は、反応性の強いア ルカリ金属には用いることができな い。我々は、1500 を超える高温で使 用可能なモリブデン製試料容器を新た に開発した[18](図17)。上段右の写真 は、流体ルビジウムを両側から保持す る厚み40 µの単結晶モリブデンディス クからのラウエスポットを示す。これ を用いて初めて超臨界領域までのX線 回折測定を行うことができた。その結 果、二体分布関数の第一ピークが、体 積膨張にもかかわらず1200 以上で急 に距離の短い方へシフトするという予 想外の事実が明らかになった。この実 験結果を下條ら「19」の第一原理分子動 力学シミュレーションの結果と比較す ることにより、膨張してゆく流体ルビ ジウム中に、非常に早い段階で、すな わち1200 という臨界温度(1744) から遠く離れた液体金属領域におい て、二原子分子Rb。が出現するという 興味深い事実が明らかになった。液体

Molybdenum cell

Transmission Laue pattern <001> orientation

図17 流体アルカリ金属の構造研究用に開発したモリブデン試料容器

され^[20]、水素がアルカリ金属の仲間であることが 初めて示された。水素分子の圧縮過程は、本研究の アルカリ金属流体の膨張過程のまさに逆のプロセス である。したがって、膨張するアルカリ金属流体の 構造研究は、現在のところ実施が困難である流体金 属水素と密接に関わる構造研究を行っていることに なる。この意味で、本研究は木星の内部構造に関わ る研究でもある。木星内部には流体金属水素が存在 し、それが木星特有の強い磁場を生じていると考え られている。水素分子が中心に向かって圧縮される ときどのように金属化するか、木星の深いところで 金属へ転移するのか、あるいは、浅いところで金属 になるかは、木星磁場の起源に関わる重要な問題で ある。本研究は、この問題に対して物質科学の立場 から確かな指針を与えることになるであろう。また、 本研究は、材料としての金属水素、すなわち、室温 超伝導体であると予想され、核融合や高効率エネル ギー源として将来必ず重要な意味を持ってくる金属 水素に大きく関わりをもつ。

6.おわりに

高圧ガス特別設備を3つのビームラインに設置 し、このような実験を遂行することができたのは、 JASRIの方々、ビームライン担当者、安全管理室、 原研、理研の方々のご支援によるものである。それ がなければこの研究を進めることはできなかったで あろう。本当に多くの方々にご支援をいただいた。 ここに深く感謝する。また、広島大学の乾雅祝助教 授をはじめ、これまで共同研究を行ってきた多くの 方々にお礼を申し上げる。神戸製鋼所、高圧システ ム、理学電機の各社には技術的な面で大変お世話に なった。本長期利用課題は、文部科学省科研費特別 推進研究(2)「放射光を用いた超臨界金属流体の静 的・動的構造の解明」(平成11~15年度)と平行し て進められたことを付記する。

参考文献

- [1] F. Hensel and W.W. Warren Jr. : *Fluid Metals* (Princeton University Press, New Jersey, 1999).
- [2] K. Tamura, M. Inui and S. Hosokawa : Rev. Sci, Instrum., 70 (1999) 144.
- [3] K. Tamura and S. Hosokawa : Phys. Rev. B 58 (1998) 9030.
- [4] K. Tamura, M. Inui, I. Nakaso, Y. Oh'ishi, K. Funakoshi and W. Utsumi : J. Phys.: Condens.

Matter, 10 (1998) 11405.

- [5] X. Hong, T. Matsusaka, M. Inui, D. Ishikawa, M.H. Kazi, K. Tamura, K. Funakoshi and W. Utsumi : J. Non-Cryst. Solids, **312-314** (2002) 284.
- [6] M. Inui, X. Hong and K. Tamura : Phys. Rev. B 68 (2003) 094108.
- [7] K. Tamura and M. Inui : J. Phys. : Condens. Matter, 13 (2001) R337.
- [8] K. Tamura, M. Inui, T. Matsusaka, D. Ishikawa, M.H. Kazi, X. Hong, M. Issiki and Y. Oh'ishi : J. Non-Cryst. Solids, **312-314** (2002) 269.
- [9] M. Inui and K. Tamura : Z. Phys. Chem., 217 (2003) 1045.
- [10] H.E. Stanley : *Introduction to phase transitions and critical phenomena*, (Clalendon Press, Oxford, 1971).
- [11] D. Ishikawa, M. Inui, K. Matsuda, K. Tamura, A.Q.R. Baron, and S. Tutui : Phys. Rev. Lett., submitted.
- [12] D. Ishikawa, M. Inui, K. Matsuda, K. Tamura, A.Q.R. Baron, S. Tutui, Y. Tanaka and T. Ishikawa : J.Phys. : Condens. Matter, 16 (2004) L45.
- [13] M. Yao, K. Okada, T. Aoki, and H. Endo : J. Non-Cryst. Solids, 205-207 (1996) 274.
- [14] J.R. Franz : Phys. Rev. Lett., 57 (1986) 889.
- [15] M. Inui, K. Tamura, I. Nakaso, Y. Oh'ishi, K. Funakoshi and W. Utsumi : J. Non-Cryst. Solids, 293-295 (2001) 446.
- [16] X. Hong, M. Inui, K. Tamura, T. Matsuoka, D. Ishikawa and M.H. Kazi : J. Non-Cryst. Solids, 293-295 (2001) 446.
- [17] M. Inui and K. Tamura : J. Non-Cryst. Solids, 312-314 (2002) 247.
- [18] K. Matsuda, K. Tamura, M. Katoh and M. Inui : Rev. Sci. Instrum., **75** (2004) 709.
- [19] F. Shimojo, Y. Zempo, K. Hoshino and M. Watabe : Phys. Rev. B 52 (1994) 9320.
- [20] S.T. Weir, A.C. Mitcell and W.J. Nellis : Phys. Rev. Lett., 76 (1996) 1860.

<u> 田村 剛三郎 TAMURA Kozaburo</u>

京都大学 工学研究科 材料工学専攻 教授 〒606-8501 京都市左京区吉田本町

TEL: 075-753-5462 FAX: 075-753-4978

e-mail: tamura@materials.mbox.media.kyoto-u.ac.jp