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Suppression of Injection Bump Leakage Caused by Sextupole
Magnets within a Bump Orbit

Hitoshi TANAKAa, Takashi OHSHIMA, Kouichi SOUTOME and Masaru

TAKAO

SPring-8/JASRI, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun Hyogo 679-5198, Japan

Abstract: We propose a scheme to suppress leakage of an injection bump orbit caused

by sextupole magnets within the bump orbit. Since the bump leakage excites a stored

beam oscillation synchronized with beam injection, its suppression is one of the most

crucial issues for achieving top-up operation at third generation synchrotron radiation

(SR) sources. In the common case where sextupole magnets are located within the bump

orbit, the condition for closing the bump depends on the amplitude of the bump orbit

due to the nonlinear kicks by the sextupole magnets. Accordingly the bump orbit never

closes for all amplitudes even under ideal condition. To solve this problem, we use a

minimal condition for emittance increase due to the bump leakage caused by sextupole

magnets in the lowest order of the nonlinear perturbation. The condition is obtained by

optimizing linear optics and satisfying specific relation among integrated strengths of the

sextupole magnets within the bump orbit. Furthermore, the condition does not depend

on the bump amplitude. Calculations using the perfectly similar field patterns reveal that

the proposed scheme can reduce the rms of the stored beam oscillation down to a few

tens of microns for all bump amplitudes. The residual oscillation is negligibly small

compared to the horizontal beam sizes presently achieved in the SR sources. The
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suppression effect of the scheme was also confirmed experimentally by the results

obtained at the SPring-8 storage ring.

29.20.-c, 29.20.Dh, 29.27.-a, 29.27.Ac, 41.60.Ap, 41.85.Ar

1. Introduction

Recent performance improvements of synchrotron radiation (SR) sources increase

stored beam density. Although the high density contributes to the generation of brilliant

and coherent photon beams, it causes the problem of shortened beam lifetime from

electron-electron scattering in a bunch even in high-energy SR sources such as the 8-GeV

SPring-81 2. Thus, further low emittance conflicts with required long beam lifetime. The

so-called top-up operation3 4 is a way to manage both the low emittance and the short

beam lifetime.

In top-up operation, continuous beam injection at short intervals, e.g., 30 seconds,

keeps the current approximately constant with a small current deviation, e.g., 0.1 %.

This means that the beam lifetime averaged over the period longer than the injection

interval is, in a sense, equal to infinity. However, when the beam injection excites an

oscillation of the stored beam with amplitude larger than the beam size, the photon beam

experiments are disturbed. The excited oscillation effectively enlarges the stored beam

emittance and modulates the photon beam intensity. Suppression of the stored beam

oscillation is therefore crucial for achieving the ideal top-up operation for experimental

users and for making the most of third generation SR sources.
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The main causes for the transverse oscillation of the stored beam are two-fold. One

cause is bump magnet errors, which can involve variations in the field patterns of the

bump magnets, differences of the magnet configuration, differences in the magnet

boundary conditions, magnet misalignments and parameters of the equivalent circuit of

the magnet including the coaxial cables, etc. These magnet errors can be solved in

principle by engineering improvement. The other cause is nonlinearity within an

injection bump orbit. In general, sextupole magnets can be found within the bump orbit

of third generation SR sources because dynamic stability of the stored beam requires

more sextupole magnets. These sextupole magnets make the closing bump condition

depend on the bump amplitude. Thus the bump orbit never closes for all amplitudes

even when all bump magnets are powered ideally. Furthermore, this nonlinear effect

causes a large oscillation and is the dominant perturbation for SPring-8. A long straight

section might make a nonlinearity-free bump orbit possible5. However, this solution is

not easily applicable to existing and also to newly planned SR sources due to following

reasons: (I) The necessary length for the injection gets longer as the stored beam energy

is higher, (II) adoption of long straight sections increases the construction cost and

causes large scale modification in existing SR sources, and (III) long straight sections are

also valuable for generation of high quality radiation and development of new radiation

sources.

To suppress the injection bump leakage by the sextupole magnets, we have investigated

the condition for minimum emittance of the bump leakage in the lowest order of a

nonlinear perturbation. In the case where amplitude of the bump orbit is small, on the

order of 0.01 m, the lowest nonlinear order mainly contributes to the leakage. We found

that the minimum condition in the lowest order of the perturbation does not depend on
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the bump amplitude. This suggests that the optimization of the sextupole strengths can

drastically reduce the oscillation excitation. The minimum condition is obtained by both

optimizing the linear optics and satisfying a specific relation among integrated strengths

of the sextupole magnets within the bump orbit.

We explain our suppression scheme in the next section and discuss its effect on the

bump leakage in section 3. We then describe how to enlarge the dynamic stability while

suppressing the bump leakage in section 4 and compare the calculation results with

experimental ones for the case of SPring-8 in section 5.

2. Proposed suppression scheme

The suppression scheme we present here is that of the bump leakage caused by the

lowest order of the nonlinear perturbation. As we see later, the lowest and second order

perturbations work as dipole and quadrupole field errors, respectively and have the

different dependences on the bump amplitude. By utilizing the different dependences,

our scheme can suppress both contributions simultaneously. First we describe the bump

leakage by the sextupole magnets when the orbit comprises of four bump magnets as

shown in Fig. 1. The bump orbit is generated in the horizontal plane, and the strengths

of the quadrupole, sextupole and bump magnets are symmetric with respect to the

center of the straight section.

In the case where the strengths of all the sextupole magnets are zero, the closed bump

amplitude at each sextupole magnet is expressed by
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where (ByL)b1 represents the integrated field strength of the first bump magnet B1 in

Fig. 1. The parameters β and φ stand for the betatron function and the phase advance of

a betatron oscillation, respectively. The suffixes si, sj and bi represent the i(j)-th

sextupole and the i-th bump magnets shown in Fig. 1, respectively. When the bump

orbit closes under the linear condition and the sextupole strengths are non-zero, leakage

of the bump orbit at the fourth bump magnet B4 is expressed by

where,
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The parameter λi is the integrated strength of the i-th sextupole magnet normalized to

the particle momentum with ∆Ksi the horizontal kick, a function of the bump amplitude.

The variables ∆x and ∆x' represents the displacement and the angle of the orbit

distortion, respectively. The symbol M denotes the 2 by 2 horizontal transfer matrix for

the section between the two dashed lines in Fig. 1, and the numbers in the parentheses

specify the matrix element.

2.1. Bump leakage caused by the lowest order sextupole perturbation

The injection bump orbit closes when both ∆xb4 and ∆x'b4 are zero. One can see that Eq.

(2) is a nonlinear equation in xsi up to the 16(24)-th power. Since the value of xsi is

~0.01 m and the matrix Mi is symplectic, we can treat xsi as a small perturbation. By

approximating Eq. (2) in the lowest order of the perturbation, the horizontal kicks by

each sextupole magnet are

and the ∆xb4 and ∆x'b4 contain only quadratic terms of Kb1. This holds even when the

injection bump is an asymmetric case, because Kb4 is proportional to Kb1.

Equation (2) also shows that the leakage-free condition is determined at the fourth

sextupole magnet S4, not at the fourth bump magnet B4. This means that the orbit

distortion by the sextupole magnets has to be self-compensating between S1 and S4 to

close the bump completely. The position and the angle of the orbit distortion at S4, ∆xs4
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and ∆x's4 generate the bump leakage and they are obtained by multiplying Eq. (2) by the

inverse matrix of M5 from the left. With ∆xs4 and ∆x's4, one can write the emittance of

the bump leakage caused by the lowest order of the perturbation ∆ε as

where,

The optimum strength of each sextupole satisfies the condition that the partial

derivative of the emittance by each sextupole strength is zero, which is given by

Since all the terms of each partial derivative depend on the 4th power of Kb1, Eq. (5)

gives the optimum condition, which is independent of the bump amplitude. This means

that the lowest order of the perturbation causes a leakage equivalent to that generated by

a dipole field error. Equation (5) can be solved in general and defines the optimum

strengths of the sextupole magnets. Actually the optimum condition given by Eq. (5)

can be simplified by adjusting the linear optics. In the case where the absolute value of

αs4 is much larger than unity, Eq. (5) can be approximated with γs4 ≈ αs4
2/βs4 as
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The optimum condition for the minimum leakage is obtained:

which is a form independent of the sextupole family. Equation (7) gives a simple linear

relation among integrated strengths of the sextupole magnets within the bump orbit. In

the case shown in Fig. 1, the above relation defines the optimum ratio between

integrated strengths of two sextupole families, λ1 and λ2 as
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2.2. Contribution from second order of sextupole perturbation

The second order of the sextupole perturbation in Eq. (2) appears as terms in the third

power of Kb1 and results in linear terms of Kb1 in Eq. (7) when Eq. (7) is truncated at

the second order of the perturbation. This also means that the second order of the

perturbation excites a leakage equivalent to that generated by a quadrupole field error,

which linearly depends on the bump amplitude. This kind of leakage may be

compensated by adjusting strengths of the bump magnets.

2.3. Suppression scheme

SR sources typically suppress the leakage pragmatically by adjusting only the strengths

of the bump magnets to close the bump orbit at the peak amplitude. This is because

strengths of the sextupole magnets are predetermined according to the dynamic stability

∆ ∆′ = − ⋅x xs
s

s
s4

4

4
4

α
β

 .                                        (7)



p-9

of the stored beam, i.e., the sextupole strengths within the bump orbit are not free

parameters but given. Consequently, the bump leakage by the lowest order of the

perturbation remains significant. It is impossible to control both the lowest and second

orders of the sextupole perturbation by tuning only the strengths of the bump magnets.

On the other hand, in our scheme, the bump leakage in the lowest order of the

perturbation is suppressed by optimizing the linear optics at the sextupole magnets

within the bump orbit and their strengths. In addition, the leakage in the second order of

the perturbation is suppressed by adjusting strengths of the bump magnets without

harming the first condition. Here, the strengths of the sextupole magnets within the

bump orbit are set to minimize the leakage. The optimum condition for the leakage

suppression requires only the relation among strengths of the sextupole magnets.

3. Calculation of suppression effect on injection bump leakage

We estimate the effect of the proposed scheme on reducing the injection bump leakage,

i.e., reduction of the stored beam oscillation by using the identical half-sine field

patterns. In the calculation, the mirror symmetric arrangement of four bump magnets as

shown in Fig. 1 was used. Within the bump orbit there are two sextupole families, S1

(=S4) and S2 (=S3) with integrated strengths λ1 and λ2, respectively. To simplify the

problem, the bump pulse width is made shorter than the revolution period of the ring,

which was assumed to be 3 µsec. The Twiss parameters assumed are listed in Table 1.

The absolute value of αs4 is tuned to be 6.5, which is much larger than unity, and

accordingly the condition for the minimum leakage is given to a good approximation by

Eq. (7).
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3.1. Numerical calculations

Since amplitude of the bump leakage is expected to be small, being at most a few mm,

we can neglect all the higher-order effects due to nonlinear fields, a longitudinal

oscillation, etc. outside the injection bump orbit. A main source of a nonlinear

perturbation inside the bump orbit is a sextupole magnet from the viewpoint of the

bump leakage. These thus justify the use of a simple ring-simulator composed of linear

elements, sextupole magnets, injection bump magnets and beam position monitors

(BPMs) in numerical calculations.

The simulator is a simple four dimensional kick-code where transverse motion is only

traced by transfer matrices and nonlinear kicks. In the simulator drift spaces, bending

and quadrupole magnets are treated as linear elements and a conventional 4 by 4 transfer

matrix gives particle motion over each element. All sextupole magnets are treated as thin

lenses and the particle motion over the sextupole magnet is calculated with an integrated

nonlinear kick at the centre of the magnet. The BPM arrangement is reconstructed in the

simulator and each BPM stores the horizontal and vertical positions of a test particle

turn by turn. All injection bump magnets are also treated as thin lenses with time-

dependent kicks generated by a predefined table. These values were taken from

experimental field data measured by using a search-coil or simply calculated with an

ideal sinusoidal function depending on our purpose of calculations. The trajectory of the

test particle is traced along the ring by kicking the particle at each bump magnet

according to the table of the kick data. We thus obtain the rms oscillation amplitude of

the stored beam caused by the bump leakage for one particle with specified timing

against the bump excitation. By repeating the timing-shift to scan all RF-buckets, the
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rms oscillation amplitude is obtained as a function of the stored beam position along the

ring.

3.2. Bump leakage at minimum condition

The analysis based on the lowest order of the perturbation predicts that R, the ratio of

λ2 to λ1, determines the bump leakage. By using Table 1 data and Eq. (8) we obtain R=-

0.57 as the optimum R that gives the minimum bump leakage. To verify the prediction,

we investigate the minimum condition numerically by using the bump orbit closure

under the linear condition whose peak amplitude is 14.5 mm at the injection point.

Figure 2 shows the rms oscillation amplitude of the stored beam calculated by using λ2

as a parameter together with the bump field pattern normalized by its peak value. Here,

λ1 was fixed to -1.5 m-2. The horizontal axis represents the phase of the bump pulse τ

in µsec, which is related to the phase angle θ through θ = π×(τ/3). The bump amplitude

is zero at both 0 and 3 µsec and it takes the maximum value of 14.5 mm at 1.5 µsec. The

vertical axis represents xr which is the rms value of the excited stored beam oscillation.

We see that the bump leakage at all the phases from 0 to 3 µsec takes the minimum

values around the condition that λ2 is 0.86 m-2, which corresponds to R=-0.57. This

result agrees well with the prediction by the analysis based on the lowest order of the

perturbation.

We also investigated the dependence of the bump leakage on the ratio R by changing λ1

from -1.5 to -4.5 m-2. Figure 3 shows the calculated results. The vertical axis represents

x2r, which is the rms value of the excited beam oscillation averaged over both the phase
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of the bump pulse and the betatron phase of the excited oscillation. The solid lines

represent the fitted results by the following function assuming linearity:

x S R R xr E r2 2= × − +min _ min ,                        (9)

where x2r_min and Rmin are the minimum of the rms oscillation amplitude x2r and the

ratio R at the minimum, respectively. The coefficient SE represents the sensitivity of the

excited rms amplitude against the deviation from the optimum value. We see that the

minimum condition lies in the narrow range of R from -0.57 to -0.61. This result agrees

with the prediction that the minimum condition does not depend on the absolute

strengths of the sextupole magnets.

In Fig. 4, the values of SE, x2r_min and Rmin obtained are plotted against λ1. In the range

where λ1 is from -1.5 to -4.5 m-2, we see that the rms value of the excited oscillation can

be suppressed to less than 20 µm. We also find that the fitted Rmin gradually deviates

from the prediction as the absolute value of λ1 increases. The calculated oscillation

amplitude involves contributions from all orders of the perturbation, whereas the

prediction is based only on the lowest order. The higher order terms naturally increase

with the absolute value of λ1 and these terms cause the deviation from the predicted

ratio.
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3.3. Effect of adjusting strengths of bump magnets for bump closure at peak

amplitude

To suppress the injection bump leakage, strengths of the bump magnets are usually

adjusted so as to close the bump orbit at the peak amplitude. This treatment efficiently

corrects the second order of the perturbation. We thus combined the correction of the

lowest order of the perturbation with the conventional strength adjustment of the bump

magnets. Figure 5 shows the rms amplitude of the excited oscillation calculated using λ2

as a parameter with λ1 fixed at -3.5 m-2. In this calculation, strengths of the bump

magnets were adjusted to close the bump at the peak amplitude for each set of the

sextupole magnets. For comparison, the calculation without the strength adjustment is

also shown for the case of λ1 =-3.5 m-2 and λ2 =1.2 m-2. We see that the bump leakage

reaches a minimum when R is around -0.63. The rms oscillation is also suppressed down

to a few tens µm. The fitted x2r_min is about 10 µm for λ1 =-3.5 m-2 and is almost the

same as that by the correction of only the lowest order perturbation. Although the

strength adjustment of the bump magnets is effective in reducing SE in Eq. (9), it does

not lower the achievable minimum notably. This fact shows that the lowest order

perturbation is dominant in the bump leakage.

4. Recovery of dynamic stability

In general a dynamic aperture (DA) of a ring accelerator must be large enough for stable

beam injection. It is, however, difficult to realize sufficiently large DA for a low-

emittance SR source. This is mainly due to strong sextupole magnets used for correcting

large linear chromaticity. These strong magnets markedly excite harmful systematic

resonance lines such as νx = N, 3νx = N, νx ±2 νy =N, where νx and νy are the horizontal
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and vertical betatron tunes, respectively, and N is a multiple of the ring periodicity. To

enlarge the DA, keeping the linear chromaticity correction unchanged, additional

sextupole magnets in dispersion-free sections are usually introduced to suppress the

harmonics that drive the harmful resonance lines6. For this reason several sextupole

families are provided in the low-emittance SR sources.

As explained in section 2, the analysis based on the lowest order of the perturbation

gives the relation among strengths of the sextupole magnets (see Eq. (8)). This relation

does not guarantee the optimum condition for the above harmonic suppression. Hence,

when the optimum condition for the leakage suppression is applied to sextupole

magnets inside the injection bump orbit, some systematic resonance lines are excited and

they possibly reduce the DA. The reduction of the DA, however, can be recovered by

re-suppressing the excited resonance lines with additional sextupole magnets outside the

injection bump orbit. The recovery of the DA is therefore consistent with the leakage

suppression. In the following, taking the SPring-8 storage ring as an example, we explain

how to enlarge the DA preserving the optimum condition for the leakage suppression.

The SPring-8 storage ring comprises of 36 Chasman Green (CG) unit cells and 4 long

straight sections (LSSs) with matching parts at both ends7. The strength distribution of

the sextupole magnets is mirror symmetric in one CG unit cell and the distribution was

originally determined to maximize the DA. Under this condition, four degrees of freedom

were available for strength optimization of the sextupole magnets. When we suppress

the bump leakage, one degree of freedom is used for the leakage suppression and two of

the remaining ones are used for the linear chromaticity correction. This implies that there

is little room for DA enlargement. Figure 6 shows the dependence of the horizontal DA
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on R, the ratio of λ2 to λ1 using λ1 as a parameter. Particle tracking is started with an

initial betatron phase of π and the X-Y coupling of 1 % from the beam injection point of

which βx and βy are 23m and 6.4m, respectively. Here, only one CG unit cell was used

to simplify the calculation and horizontal and vertical chromaticities were set to +8. We

see that the optimum ratio for the DA is far from the Rmin = -0.57 condition shown by

the broken line. In addition the DA is small around Rmin, with a value of only 15 mm at

the beam injection side. Since the oscillation amplitude of the injected beam is about 10

mm and both magnetic errors and insertion of LSSs reduce the DA, 15 mm is too small

to achieve a stable beam injection condition.

A method to bring additional degrees of freedom for the DA enlargement is to expand

the unit structure of the ring. By expanding the unit structure from one CG cell to two

cells as shown in Fig. 7, the degree of freedom increases from four to six for the SPring-8

storage ring and new two degrees of freedom, S5 and S6 in Fig. 7, are available for the

DA enlargement. By optimizing strengths of the sextupole magnets under this new

situation, the DA is increased by a factor of two as shown in Fig. 8, which is large

enough for the stable beam injection. In this calculation, the full storage ring structure

without magnetic errors was used.

The effectiveness of the above scheme was checked experimentally by measuring

injection efficiency before and after the DA enlargement. We first measured the injection

efficiency for the case of the four sextupole families shown in Fig. 7(A). The measured

efficiency was about 5 %. To improve this low efficiency, cabling change of the

sextupole magnets was carried out in the summer 2003 to realize the expansion of the
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unit structure of the ring. The new cabling enables us to make use of the six sextupole

families shown in Fig. 7(B). By optimizing strengths of these six sextupole families, the

injection efficiency was markedly improved and more than 80 % was achieved.

5. Experimental results for suppression of injection bump leakage

We investigated the effect of the proposed suppression scheme experimentally in the

SPring-8 storage ring. Four pulse bump magnets arranged almost the same way as shown

in Fig. 1 generate the injection bump orbit. The strengths of the four bump magnets are

adjusted so that the bump orbit closes at the peak amplitude. The bump pulse-width is

8.2 µsec, which is larger than the revolution period of 4.79 µsec. This means that the

bump magnets kick a major part of the stored beam twice. Two families of sextupole

magnets are located within the bump orbit and their arrangement is also the same as

shown in Fig. 1. The absolute value of αs4, a critical parameter, is larger than 6 owing to

the characteristic arrangement of quadrupole magnets in the CG unit cell. This large αs4

guarantees that the condition for the minimum leakage is given by Eq. (7). The results

obtained in section 3 shows that the optimum value of R is -0.63.

Figure 9 shows the measured field patterns. The clear variations in the patterns are seen

at the rising and falling parts of the pulses. These cause the stored beam oscillation,

which can not be reduced by the proposed suppression scheme. Using these measured

field patterns, the suppression effect was calculated by scanning R from -0.57 to -0.81,

and shown in Fig. 10. We see that the oscillation originating from the sextupole

nonlinearity is markedly reduced with R=-0.63 as predicted by the analysis with the

lowest perturbation. For the same range of the ratio R, we measured the dependence of
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the rms horizontal oscillation amplitude on the phase of the pulse bump by using 276

single-pass beam position monitors. Figure 11 shows the experimental results. A

comparison between Figs. 10 and 11 shows that the measurement agrees well with the

calculation. In two cases for R=-0.63 and R=-0.57, the calculated reductions are smaller

compared with the measured ones especially after ~10 µsec. The field measurement

error around the under-shoot part is probably reasonable for this difference, because the

calculation explains well the measurement in the period from 0 to 8 µsec, which is not

affected by the under-shoot part.

6. Summary

We propose a scheme to suppress the injection bump leakage caused by sextupole

magnets within the bump orbit. The proposed scheme is based on suppression of the

lowest order of the sextupole perturbation. Since this perturbation works as a dipole

field error, the excited oscillation is suppressed for all bump amplitudes by optimizing

both the linear optics and the strengths of sextupole magnets within the injection bump.

This scheme can reduce the amplitude of the excited oscillation down to a few tens of

µm rms even though the scheme is quite simple and needs no significant modification of

the magnet arrangement. The residual oscillation is negligibly small compared to the

horizontal beam sizes presently achieved in the third generation SR sources. In other

words, the stored beam oscillation will become invisible for experimental users under the

proposed scheme. To verify the suppression effect experimentally, the reduction of the

stored beam oscillation by the proposed scheme was measured at SPring-8. Through the

comparison between the calculated and measured results, the effectiveness of the scheme

was confirmed. We conclude that the proposed scheme is useful for suppressing the
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injection bump leakage caused by the sextupole magnets and aids effective top-up

operation at the third generation SR sources.
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Fig. 1 Arrangement of the injection bump magnets. The injection bump orbit

generated by the bump magnets (B1~B4, the empty squares) contains two bending

magnets (BMs, the hatched squares), six quadrupole magnets (Qs, the filled

rectangles), and the sextupole magnets (S1~S4, the empty rectangles). The

symbol M denotes the horizontal transfer matrix for the section between the two

dashed lines.

Fig. 2 Rms oscillation amplitude xr versus the phase of the pulse bump ττττ when

the bump orbit closes under purely linear condition. The sextupole strength λλλλ1 is

set to be -1.5 m-2 and λλλλ2 is changed as a parameter from +0.6 to +1.2.

Fig. 3 Rms oscillation amplitude averaged over both the oscillation and the pulse

bump phases x2r versus R the ratio of λλλλ2 to λλλλ1. The lines denote the fitted results

with Eq. (9). The broken line denotes Rmin predicted by the analysis based on the

lowest order of the perturbation.
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Fig. 4 Fitting parameters, Rmin, x2r, and SE versus R the ratio of λλλλ2 to λλλλ1.

Fig. 5 Rms oscillation amplitude xr versus the phase of the pulse bump ττττ when

the bump orbit closes at the maximum bump amplitude. The sextupole strength

λλλλ1 is set to be -3.5 m-2 and λλλλ2 is changed as a parameter from +1.2 to +2.5.

Fig. 6 Horizontal dynamic apertures for the SPring-8 storage ring without errors

versus R the ratio of λλλλ2 to λλλλ1. The sextupole strength λλλλ1 is changed as a

parameter from -3.0 to -4.0. The broken line shows the optimum R for the

suppression of the bump leakage.

Fig. 7 Expansion of the unit structure of the ring. The unit composed of 1 CG cell

(A) has four sextupole families and the symmetry point located at the center of

the CG cell as shown by the broken line. By expanding the unit from 1 to 2 CG

cells (B), sextupole families can be increased up to six.

Fig. 8 Comparison of the ideal dynamic apertures for the SPring-8 storage rings

with the different numbers of sextupole families. The open and filled circles

show the dynamic aperture for the ring with 4 sextupole families and that with 6

sextupole families, respectively. In both cases the R is -0.57 with λλλλ1=-3.5 and

λλλλ2=2.0. Particle tracking is started from the beam injection point.
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Fig. 9 Measured field patterns of the four bump magnets installed in the SPring-

8 storage ring.

Fig. 10 Rms oscillation amplitude xr calculated with the measured field patters of

the pulse bump shown in Fig. 9.

Fig. 11 Rms oscillation amplitude xr the measured at the SPring-8 storage ring.

Table 1 Twiss parameters at the sextupole and pulse bump magnets. Center of B1

is the reference of the phase advance.

Position βx [m] αx φx [rad]

B1 3.67 1.42 0

S1 16.9 -6.50 2.21

S2 26.6 2.67 2.29

B2 22.9 0.13 2.34

B3 22.9 -0.13 2.41

S3 26.6 -2.67 2.46

S4 16.9 6.50 2.54

B4 3.67 -1.42 4.75



B1 B2 B3
=B2

B4
=B1

BM BM

QQ Q QQ Q

S1 S2
S3
=S2

S4
=S1

M1 M2 M3 M4 M5

Injection Point

Fig. 1

Bump Orbit



0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

λ
2
=+0.6

λ
2
=+0.75

λ
2
=+0.86

λ
2
=+0.9

λ
2
=+1.1

λ
2
=+1.2

R
m

s 
O

sc
ill

at
io

n 
A

m
pl

itu
de

 x
r [

m
m

]
N

orm
alized H

alf Sine Field B
N

Phase in Time τ [µsec]

λ
1
=-1.5

Fig. 2



0

0.2

0.4

0.6

0.8

1

1.2

-0.7 -0.6 -0.5 -0.4

λ
1
=-1.5

λ
1
=-2.5

λ
1
=-3.5

λ
1
=-4.5

R
m

s 
O

sc
ill

at
io

n 
A

m
pl

itu
de

 A
ve

ra
ge

d 
ov

er
 O

sc
ill

at
io

n 
an

d 
B

um
p 

Ph
as

es
 x

2r
 [

m
m

]

R≡λ
2
/λ

1

Minimum predicted 
by lowest perturbation 
treatment

Fig. 3



-0.61

-0.605

-0.6

-0.595

-0.59

-0.585

-0.58

-0.575

0

5

10

15

20

-5 -4 -3 -2 -1

R
min

X
2r_min

S
E

R
at

io
 o

f 
λ 2 to

 λ
1 f

or
 M

in
im

um
 L

ea
ka

ge
 R

m
in

M
inim

um
 R

M
S O

scillation A
m

plitude x
2r_m

in   [µ
m

]

and E
xcitation Sensitivity S

E  [m
m

]

Integrated Strength of Sextupole Magnet λ
1
 [m-2]

x
2r

=S
E
× | R - R

min
 | + x

2r_min

Fig. 4



0

1

2

3

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

λ
2
=+1.2

λ
2
=+2.0

λ
2
=+2.1

λ
2
=+2.2

λ
2
=+2.5

R
m

s 
O

sc
ill

at
io

n 
A

m
pl

itu
de

 x
r [

m
m

]
N

orm
alized H

alf Sine Field B
N

Phase in Time τ [µsec]

Fig. 5

 λ
1
=-3.5

 λ
2
=+1.2

w/o Adjustment



0

10

20

30

40

50

60

-1.4 -1.2 -1 -0.8 -0.6

A
bs

ol
ut

e 
V

al
ue

 o
f 

H
or

iz
on

ta
l D

yn
am

ic
 

A
pe

rt
ur

e 
at

 X
-Y

 c
ou

pl
in

g 
of

 1
%

  [
m

m
]

R≡ λ
2
/ λ

1

Fig. 6

λ
1
=-3.0

λ
1
=-3.5

λ
1
=-4.0



S1 S2S2S1 S3 S3S4

CG Cell

S1 S2S2S1 S3 S3S4

CG Cell

Bump Orbit

(A) Unit Structure: 1CG Cell

B1 B2

(B) Unit Structure: 2CG Cells

S1 S2S6S5 S3 S3S4

CG Cell

S5 S6S2S1 S3 S3S4

CG Cell

Bump Orbit

B1 B2

Fig. 7



0

5

10

15

20

25

-30 -20 -10 0 10 20

Y
 [

m
m

]

X[mm]

Unit composed of 1 CG cell 
with 4 sextupole families

Unit composed of 2 CG cells
with 6 sextupole families

Fig. 8



-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 3 6 9 12

B
1

B
2

B
3

B
4

   
 

N
or

m
al

iz
ed

 B
um

p 
Fi

el
d 

B
N

Time [µsec]
  

Fig.9



0.00

0.50

1.00

1.50

2.00

0 5 10 15 20

R=-0.81
R=-0.76
R=-0.7
R=-0.57
R=-0.63

C
al

cu
la

te
d 

R
M

S 
O

sc
ill

at
io

n 
A

m
pl

itu
de

 X
r [

m
m

]

Time [µsec]

Fig. 10



0.00

0.50

1.00

1.50

2.00

0 5 10 15 20

R=-0.81
R=-0.76
R=-0.7

R=-0.57
R=-0.63

M
ea

su
re

d 
R

M
S 

O
sc

ill
at

io
n 

A
m

pl
itu

de
 X

r [
m

m
]

Time [µsec]

Fig. 11




