大型放射光施設 SPring-8

コンテンツへジャンプする
» ENGLISH
パーソナルツール
 

ブラックホールに落ち込むプラズマの構造が明らかに! ― NASAの気球に世界最大の日本製の望遠鏡を搭載―(プレスリリース)

公開日
2025年11月14日
  • BL20B2(医学・イメージングI)

2025年11月14日
広島大学
大阪大学
愛媛大学

【本研究成果のポイント】

1. ブラックホールの極限環境を、X線(硬X線注1)観測では新しい「偏光注2」という手法から解き明かしました。

2. 気球搭載型望遠鏡 XL-Calibur(エックスエル-カリバー)注3により、地球からおよそ7000光年離れたブラックホール「はくちょう座 X-1 (Cygnus X-1)注4からの15-60 keV(1.5-6万電子ボルト)の硬X線を観測しました。
(YouTube動画「NASA XL-CALIBUR Launch」で検察 NASA XL-CALIBUR Launch

3. 日本製の世界最大のX線集光ミラー注5などにより、従来よりも20倍も高い感度で観測データを取得することに成功しました。

4. これまでブラックホール周辺にコロナ(高温のプラズマ領域)が存在することが知られていましたが、その形状を決定できる観測結果がありませんでした。今回のXL-Caliburの観測結果は、直径125 kmのブラックホールの中心から2000 km以内で明るく輝くコロナが、ブラックホールから数十億kmにわたって噴出する巨大なプラズマジェットと垂直方向に整列している(伴星から奪った物質が落ち込む円盤に沿って平べったい構造をしている)ことを示します。

5. 本研究成果により、ブラックホール近傍のコロナプラズマの構造を制限することができ、ブラックホール近傍の物理過程の理解に重要な手がかりを提供しました。

広島大学大学院先進理工系科学研究科の高橋弘充准教授、大阪大学大学院理学研究科の松本浩典教授、JAXA宇宙科学研究所の前田良知助教、愛媛大学大学院理工学研究科の粟木久光教授らを含む気球搭載型望遠鏡 XL-Calibur国際研究チームは、ブラックホールに物質が落ち込む前にどのように渦を巻き、莫大なエネルギーを放出するのか、その環境をより深く理解するために、硬X線放射の「偏光」観測を実施しました。
X線偏光観測ミッションXL-Caliburは、2024年7月にスウェーデンからカナダへ向けた約6日間の長距離気球フライト中に、ブラックホールX線連星である「はくちょう座 X-1」を観測しました。XL-Caliburの観測により、「はくちょう座 X-1」から放射される15-60 keVのX線について、偏光情報(偏光度と偏光角)をこれまでよりも約20倍も高い感度で観測することに成功し、最も精密な制約を得ることができました。XL-Caliburの結果を、直径125 kmのブラックホールの中心から2000 km以内で明るく輝くプラズマ領域(コロナ)が、ブラックホールから数十億kmにわたって噴出する巨大なプラズマジェットと垂直方向に整列していることを示しています。この結果から、コロナは、伴星から奪った物質が渦状に落ち込む円盤に沿って、平べったい構造をしていることが明らかになりました。
今後は、改良した気球実験や人工衛星によるX線の偏光・測光・分光の観測結果、理論研究から、様々な質量のブラックホール(太陽質量の数倍から100億倍もの超巨大サイズ)において、ブラックホールに吸い込まれつつある物質が重力の影響をどのように受けているかが明らかにされ、中心に存在するブラックホールの特性(自転速度)やブラックホールが及ぼす相対論的な効果(時空のゆがみ)などの理解が進むと期待されます。
本ミッションでは、日本の研究者が装置の中核となるX線集光ミラーの製作・較正を担当しました。X線集光ミラーの反射率と結像性能を較正の際には、大型放射光施設SPring-8(BL20B2)の20-70 keVの硬X線を利用しました。こうして日本の技術力が国際観測の鍵を担った形となっています。

論文情報
雑誌名:The Astrophysical Journal
題名:XL-Calibur Polarimetry of Cyg X-1 Further Constrains the Origin of its Hard-state X-ray Emission
著者:Hisamitsu Awaki, Matthew G. Baring, Richard Bose, Jacob Casey, Sohee Chun, Adrika Dasgupta, Pavel Galchenko, Ephraim Gau*, Kazuho Goya, Tomohiro Hakamata, Takayuki Hayashi, Scott Heatwole, Kun Hu*, Daiki Ishi, Manabu Ishida, Fabian Kislat, Mózsi Kiss*, Kassi Klepper, Henric Krawczynski, Haruki Kuramoto, Lindsey Lisalda, Yoshitomo Maeda, Hironori Matsumoto, Shravan Vengalil Menon, Aiko Miyamoto, Asca Miyamoto, Kaito Murakami, Takashi Okajima, Mark Pearce, Brian Rauch, Nicole Rodriguez Cavero, Kentaro Shirahama, Sean Spooner*, Hiromitsu Takahashi, Keisuke Tamura, Yuusuke Uchida, Kasun Wimalasena, Masato Yokota, Marina Yoshimoto
*責任著者
所属:
  a 広島大学 大学院先進理工系科学研究科(高橋弘充、呉屋和保、横田雅人)
  b 大阪大学 大学院理学研究科(松本浩典、袴田知宏、倉本春希、宮本愛子、村上海都、白濱健太郎)
  c JAXA宇宙科学研究所(石田学、前田良知、内田悠介、伊師大貴、宮本明日香)
  d 愛媛大学 大学院理工学研究科(粟木久光、善本真梨那)
DOI:10.3847/1538-4357/ae0f1d

【背景】

ブラックホールに降着し(降り積もり)吸い込まれる物質は、強い重力によって非常に高温に熱せられ(約1000万度)、X線で明るく輝いています。そのため、X線観測によって、ブラックホール近傍での降着物質の物理状態を明らかにすることができれば、中心に存在するブラックホール自身の物理量や、強い重力場における一般・特殊相対論的な効果も観測することができると期待されています。しかし、これまでの時間変動(測光)やエネルギー(分光)の観測だけでは、降着物質がどのような状態にあるのか長年にわたって議論が平行線をたどっていました(遠方にあるため画像では「点」にしか見えず、構造は調べられていません)。
偏光観測は、画像、時間変動、エネルギーの測定とは異なり、高エネルギー粒子が放射する光子の偏光(電場の振動方向が偏っている)情報から、物質から直接届いたのか、どこかで反射・散乱されてきたのかという幾何構造を推定することができます。電波や可視光では一般的な手法ですが、X線やガンマ線の帯域では技術的な困難から、これまでに硬X線の帯域で偏光情報を取得できたのは、我々が2016年に実施したPoGO+気球実験だけでした(ただし上限値で制限がかけられたのみ)。

【研究成果の内容】

2024年7月、日本チームを含む国際共同研究チームは、気球望遠鏡 XL-Calibur を用いた新たな観測により、ブラックホール周辺の極限的な環境を明らかにしました。このミッションは、米国ワシントン大学が主導し、日本からは広島大学、大阪大学、JAXA宇宙科学研究所、愛媛大学などの研究者が世界最大のX線集光ミラーを提供して中心的な役割を果たしています。
観測対象は、地球から約7,000光年の距離にあるはくちょう座X-1(Cyg X-1)。1964年に発見され、天の川銀河で最初に「ブラックホール」であると広く受け入れられたX線天体です。ブラックホールの質量は太陽の約21倍。ブラックホールの周囲には、落ち込む物質と噴き出す物質が以下の3つの構成要素を形成していると考えられています:
 1. 降着円盤:近傍の恒星から奪った物質が円盤状に渦を巻いて落ち込む。
 2. コロナプラズマ:降着円盤からの光にエネルギーを与えて、より高エネルギーにする高温プラズマ。
 3. プラズマジェット(アウトフロー):ブラックホールの自転に伴う時空のねじれと強磁場により、一部の物質が極方向に高速で噴き出す流れ。
XL-Caliburの観測は、特にコロナプラズマ(2番目)の形状と位置、起源に強い制約を与えています。以前のPoGO+の観測では、硬X線の偏光が微弱(偏光度が8.6%以下)であることしか分かっていませんでしたが、今回のXL-Caliburでは感度が約20倍も向上したことにより、偏光度がおよそ5.0%であることが測定することができました。この結果、直径125 kmのブラックホールの中心から2000 km以内で明るく輝くコロナが、ブラックホールから数十億kmにわたって噴出する巨大なプラズマジェットと垂直方向に整列していることが分かりました。
従来の我々のPoGO+実験による観測結果では、コロナがブラックホール近傍100kmに局在するようなコンパクトな形状ではなく、広がって存在していることだけが分かっていました。今回のXL-Calibur実験による観測結果から、広がったコロナの形状は円盤に沿った平べったい構造であることを明らかにすることができました。

【今後の展開】

この情報は、NASAの偏光衛星IXPE(2–8 keVの低いエネルギー)や、JAXAのXRISMなどの分光衛星、さらに最新のコンピュータシミュレーションと組み合わせることで、今後数年でブラックホールおよびその近傍におけるより精密な物理モデルが構築されると期待されています。XL-Caliburチームでは、次は南極からのフライトにより、他のブラックホールや強磁場の中性子星の偏光観測を目指しています。
国際協力で実現した気球実験XL-Calibur国際共同研究チームには、ワシントン大学、ニューハンプシャー大学、大阪大学、広島大学、JAXA宇宙科学研究所(ISAS)、スウェーデン王立工科大学(KTH)、NASAゴダード宇宙飛行センターおよびワロップス飛行施設など、計13機関以上が参加しています。ミッション代表はワシントン大学の Henric Krawczynski教授。

【参考資料】

図1:2024年7月9日にスウェーデンから放球されたXL-Calibur(エックスエル-カリバー)気球(YouTube動画「NASA XL-CALIBUR Launch」 NASA XL-CALIBUR Launch

図2:翌日(7月15日)に着陸場所を上空から確認した写真(NASA)。無事に気球ゴンドラの回収が済んでおり、次回の南極フライトに向けて準備を進めています。

図3:XL-Caliburによる観測結果。ブラックホール近傍の高温コロナによって放射される硬X線の偏光方向が、電波で観測されている巨大ジェット(白色)と向きが揃っている(平行)ことが分かりました。IXPE衛星による軟X線の観測結果がピンク。

図4:今回判明したコロナの想像図(断面図)。コロナは円盤に沿って平べったい形状をしている(ジェットとは垂直方向に広がっている)ことを明らかにすることができました。

【その他】

本研究は、文部科学省科学研究費補助金(課題番号:19H01908、19H05609、20H00175、20H00178、21K13946、22H01277、23H00117、23H00128)による支援を受けたほか、JAXA小規模計画、SPring-8の支援も受けています。


【用語解説】

注1)硬X線
X線とガンマ線の間のエネルギーをもつ電磁波。今回観測した硬X線のエネルギー帯は15–60 keV(可視光の約1.5万~6万倍のエネルギー)。

注2)偏光
通常の光は色んな方向に電場が振動しています。人工的にはサングラス、自然界では水面での反射などにより、ある特定の方向のみに振動している状況を偏光した光と呼びます。
「偏光度」は偏光している光の割合、「偏光角」はその向きを表します。これらの測定により、ブラックホール近傍で超高温プラズマがどのような形状で暴力的に運動しているのかを知ることができます。また、同様の観測を中性子星や星雲のような他のX線天体に行うことで、宇宙で最も強力な磁場構造の形状を明らかにすることもできのです。

注3)X線を北極圏の上空40km(地球の大気0.3%しかない上空)から観測
天体からのX線は、地球大気で吸収されてしまうため、宇宙(に近い上空)から観測をする必要があります。
研究チームは2024年7月、NASAの直径100mに膨らむ科学気球によって、XL-Caliburを上空40kmの成層圏まで上昇させ、大気の影響をほぼ受けない高度から天体観測を行いました。フライト時間は、スウェーデンからカナダにかけて5.5日間(7月9日から14日)。
人工衛星として打ち上げることができれば、より長い観測時間を得ることができますが、より高い信頼性・確実性が求められるため、世界初を目指す偏光観測のような野心的な検出器を載せるのは難しく、また開発期間も長くなってしまいます。我々は偏光観測に特化した気球実験として開発したことで、複数回のフライトを重ねることで検出器の性能を向上させ、最先端技術の利用しつつ、総重量2トンもの大型の検出器で観測することができました。これの結果が、低コストでありながら、他の人工衛星のミッションに先駆けて信頼性の高い硬X線の偏光観測へと実を結びました。

左上:打ち上げ直前のXL-Calibur気球。右上:打ち上げ直後の気球。下:打ち上げ場のスウェーデンから着陸地カナダまでの5.5日間のフライトの軌跡。(写真やデータはNASAより)

注4)「はくちょう座 X-1」(Cygnus X-1)
1964年に発見され、銀河系で初めて「本物のブラックホール」として広く認められた天体です。このブラックホールは伴星(超巨星)と密接に公転する連星系を形成しているため、ブラックホールX線連星と呼ばれます。もし我々が肉眼でCyg X-1を見ようとすれば、その見かけの大きさは月の幅の2千万分の1しかありません。したがって、直接像を撮れないほど小さな天体の形状を推定するには、従来の測光・分光観測に加え、今回新しく実現した偏光観測が非常に有効なのです。

左:可視光(Digitized Sky Survey)で観測した「はくちょう座X-1」。伴星の超巨星が青白く見える。右:「はくちょう座X-1」の想像図。https://chandra.harvard.edu/photo/2011/cygx1/
左側の中心の暗い部分がブラックホール。右側の青白い星が伴星(超巨星)。赤い円盤が降着円盤。上下に伸びる構造がプラズマジェット。今回の研究対象のコロナプラズマはブラックホールのごく近傍に存在。

注5)X線集光ミラー(日本製で世界最大)
X線を集光するためには、金属表面での全反射や結晶間隔を利用したブラッグ反射が利用されます。(眼鏡のレンズは透過してしまうため使えない)
今回利用したミラーは、213枚のアルミニウムシェルにそれぞれ10〜140層の白金–炭素の二層膜をコーティングしたものです。硬X線は、炭素を透過して、白金と白金の間隔に応じたエネルギーがブラッグ反射して効率良く集光されます。



本件に関するお問い合わせ先
<研究に関すること>
広島大学 大学院先進理工系科学研究科
准教授 高橋 弘充(たかはし ひろみつ)

<広報に関すること>
広島大学 広報室
TEL:082-424-3749
E-mail:kohooffice.hiroshima-u.ac.jp

大阪大学 理学研究科庶務係
TEL: 06-6850-5280
FAX 06-6850-5288
E-mail:ri-syomuoffice.osaka-u.ac.jp

愛媛大学 総務部広報課広報チーム
TEL:089-927-9022
E-mail:kohostu.ehime-u.ac.jp

(SPring-8 / SACLAに関すること)
公益財団法人高輝度光科学研究センター 利用推進部 普及情報課
TEL:0791-58-2785 FAX:0791-58-2786
E-mail:kouhou@spring8.or.jp

ひとつ前
叩く・擦る程度の刺激で破砕し発光する希土類錯体のソフトクリスタルの開発とそのエネルギー変換機構の解明に成功(プレスリリース)
現在の記事
ブラックホールに落ち込むプラズマの構造が明らかに! ― NASAの気球に世界最大の日本製の望遠鏡を搭載―(プレスリリース)